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BIOPHYSICS AND COMPUTATIONAL BIOLOGY
Correction for “Assessing the utility of coevolution-based residue–
residue contact predictions in a sequence- and structure-rich era,”
by Hetunandan Kamisetty, Sergey Ovchinnikov, and David Baker,
which appeared in issue 39, September 24, 2013, of Proc Natl Acad
Sci USA (110:15674–15679; first published September 5, 2013;
10.1073/pnas.1314045110).

The authors note that Fig. 1 C and E and the corresponding
legend appeared incorrectly. The corrected figure and its legend
appear below.

www.pnas.org/cgi/doi/10.1073/pnas.1319550110
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Fig. 1. Accuracy of contact prediction. Comparison of GREMLIN with DCA (A), PSICOV (B), MIc (C), and GREMLIN when prior information is used (D). Each
point corresponds to a protein, the axes indicate the accuracy of the top ranked L/2 Cβ−Cβ contacts predicted by the indicated methods. (E) (solid lines)
Average accuracy for varying numbers of predictions; (broken lines) fraction of targets where GREMLIN was more accurate than the indicated method.
Dependence of accuracy of the top L/5 (F) and L/2 (G) predictions on the alignment depth for a subset of 75 targets with deep alignments.
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NEUROSCIENCE
Correction for “Trafficking of gap junction channels at a verte-
brate electrical synapse in vivo,” by Carmen E. Flores, Srikant
Nannapaneni, Kimberly G. V. Davidson, Thomas Yasumura,
Michael V. L. Bennett, John E. Rash, and Alberto E. Pereda,
which appeared in issue 9, February 28, 2012, of Proc Natl Acad

Sci USA (109:E573–E582; first published February 7, 2012;
10.1073/pnas.1121557109).
The authors note that the legend for Fig. 4 appeared incorrectly.

The figure and its corrected legend appear below.

www.pnas.org/cgi/doi/10.1073/pnas.1319624110

Fig. 4. Presence of endocytic and exocytic machinery in CEs. CEs are identified by immunofluorescence connexin labeling with monoclonal anti-Cx35/36
(mCx35) (green). (A) Diagram of the M-cell. (Inset) Confocal projection of a single CE (from Fig. 4D of ref. 23; this false-color image was rotated and recolored
for consistency with adjacent immunofluorescence). Single-terminal images in this figure represent the average of three to five z-sections; the dotted line
denotes the perimeter of a single CE. (B) Confocal projection of a portion of the lateral dendrite of the M-cell using double immunolabeling with polyclonal
anti-Cx36 (pCx36; Zymed 36-4600; green) and monoclonal anti-SNAP-25 (mSNAP-25; red) antibodies. (C and D) Confocal projection of single CEs using double
immunolabeling with anti-Cx36 (green) and monoclonal anti–SNAP-25 (red) antibodies. In en face view (C), SNAP-25 was not restricted to the periphery of the
terminals, where glutamate receptors and active zones are concentrated, but also was found in the central region where GJs predominate (arrowheads). (E
and F) As with SNAP-25, some dynamin labeling (monoclonal antibody) was closely associated with labeling with anti-Cx36 (arrowheads), consistent with
endocytosis of cell–cell channels. The image in F is a tilted side view of a CE, whose contact area is characteristically concave with the center protruding into
the M-cell. The red dotted line in F indicates the approximate position of the cell surface (“M-cell” indicates the dendritic side). The approach does not
distinguish between presynaptic and postsynaptic locations of connexin labeling. Both dynamin and SNAP-25 labeling also were observed in the vicinity of CEs
(asterisks in D and E). Most of these sites were anti-Cx36 negative and likely correspond to small inhibitory boutons (65).
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Recently developed methods have shown considerable promise in
predicting residue–residue contacts in protein 3D structures using
evolutionary covariance information. However, these methods re-
quire large numbers of evolutionarily related sequences to robustly
assess the extent of residue covariation, and the larger the protein
family, the more likely that contact information is unnecessary be-
cause a reasonable model can be built based on the structure of
a homolog. Here we describe a method that integrates sequence
coevolution and structural context information using a pseudolike-
lihood approach, allowing more accurate contact predictions from
fewer homologous sequences. We rigorously assess the utility of
predicted contacts for protein structure prediction using large and
representative sequence and structure databases from recent struc-
ture prediction experiments. We find that contact predictions are
likely to be accurate when the number of aligned sequences (with
sequence redundancy reduced to 90%) is greater than five times
the length of the protein, and that accurate predictions are likely to
be useful for structure modeling if the aligned sequences are more
similar to the protein of interest than to the closest homolog of
known structure. These conditions are currently met by 422 of the
protein families collected in the Pfam database.

protein coevolution | maximum-entropy model | markov random field

There has been long-standing interest in the prediction of
residue–residue contacts based on the covariance of residue-

substitution patterns in multiple aligned sequences (1). For many
years, these methods met with relatively little success, but with
the increase in the number of known protein sequences and
improvements in methods such approaches have recently demon-
strated considerable promise. The methodological improvements
distinguish between direct couplings and indirect correlations that
arise from chains of the direct couplings (i.e., if A is coupled to B,
and B to C, one might erroneously conclude A is coupled to C).
Two recent methods, Direct Coupling Analysis (DCA) and Protein
Sparse InverseCOVariance (PSICOV) (2, 3), achieve this separation
by inverting a residue–residue covariance matrix.
In parallel with the growth of the sequence databases, there

has been a considerable increase in the number of known struc-
tures over the past decade. Comparative modeling methods, which
predict protein structure based on homologs of known structures,
have become increasingly powerful, and can generate models more
accurate than those produced by de novo modeling in most cases.
Thus, the growth in the databases over the last decade represents
something of a catch-22 for contact prediction: there are many
more sequences, so such predictions can be made much more ac-
curately, but there are few protein families with the many se-
quences required for accurate contact prediction whose structures
cannot be modeled relatively accurately using comparative mod-
eling methods.
In this paper we begin by examining the approximations in-

volved in the residue–residue covariation matrix inversion used
by PSICOV and DCA, and show that more accurate contact
predictions can be obtained using fewer sequences by going beyond
the second-order approximation to the underlying distribution

implicit in both methods. We then rigorously assess the utility
and limits of contact prediction for protein tertiary structure
modeling by evaluating the extent to which predicted contacts
can contribute to modeling in the presence of the homologous
structure information likely to be available.

Results and Discussion
Previous work (2–4) has demonstrated that contacts between
residues in the 3D structure of a protein can be predicted with
considerable accuracy for large protein families based on the
evolutionary covariance observed in multiple sequence align-
ments. We briefly review the basis for these approaches to mo-
tivate the method described in this paper.
Given a set of data drawn from an (unknown) multivariate

probability distribution PðX1; . . . ;XLÞ, the marginal frequencies
MiðXiÞ, and the pair correlations Fi;jðXi;XjÞ can be readily
computed. If the underlying distribution is Gaussian:

PðX1;::;XL = xÞ∝ exp
�
−ðx− μÞTΩðx− μÞ

�
: [1]

The parameters of the distribution can be readily obtained from
the frequencies and pair correlations: μ= ½M1; . . . ;ML� and Ω=
ðF −M′MÞ−1=2. Although the observed Fi;j are subject to chain-
ing effects (if A is correlated with B, and B with C, then A will
appear correlated with C), the Ωij are the direct couplings be-
tween variables with chaining effects eliminated.
Although they differ significantly in derivation and their es-

timation procedures, both DCA and PSICOV use the recipe of
approximating the direct couplings with an estimate of the in-
verse covariance matrix, as is appropriate for a Gaussian. Our
approach, called GREMLIN, avoids this approximation and
instead obtains model parameters from the conditional corre-
lations ðFðX1jX2;X3; . . .XLÞÞ using our pseudolikelihood frame-
work (5), optimizing the learning procedure for contact prediction.

Significance

We develop an improved method for predicting residue–resi-
due contacts in protein structures that achieves higher accuracy
than previous methods by integrating structural context and
sequence coevolution information. We then determine the
conditions under which these predicted contacts are likely to
be useful for structure modeling and identify more than 400
protein families where these conditions are currently met.
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A recently published method, PseudoLikelihood Maximization Di-
rect Coupling Analysis (PLMDCA) (6), also uses a pseudolikelihood
approach. Here, we go beyond PLMDCA improving the robust-
ness of predictions with fewer sequences by incorporating prior
information on pairs likely to be in contact.

Accuracy of Contact Prediction. It was recently shown that pseu-
dolikelihood-based contact prediction is more accurate than
DCA on a set of Pfam domains with deep alignments (6). Here,
we first carry out a more comprehensive comparison of contact
prediction methods (GREMLIN, PSICOV, DCA, MIc, and
PLMDCA) on a larger set of families with varying alignment
depths. Second, we explore the utility of alternate sources of
prior information in improving the accuracy of pseudolikelihood-
based contact prediction.
We constructed a dataset of 329 protein targets selected from

the Continuous, Automated Model Evaluation (CAMEO) server
(7) (Dataset S1, details in Materials). These targets represent
a snapshot of recently deposited protein structures into the
Protein Data Bank and encompass a wide range of protein sizes,
folds, and evolutionary histories. For each protein in the list, we
constructed alignments of evolutionarily related proteins and
used each method to predict contacts. We computed the accu-
racy of contact predictions for each method by computing the
fraction of predicted contacts that had a Cβ−Cβ (Cα in the case
of Glycine) distance less than 8 Å. To discount the effects of
local secondary structure on accuracy, we restricted ourselves to
positions at least 12 residues apart in the target sequence (results
when restricted to positions at least 24 residues apart are similar;
SI Appendix, Fig. S1). The methods assign a score to each contact
prediction, and the predictions were ranked for each protein
target based on these values.
Over the CAMEO protein test set, GREMLIN’s pseudolike-

lihood method is more accurate than DCA, PSICOV, and MIc
when no prior information was used (Fig. 1 A–C). A simple prior
based on sequence separation and predicted secondary structure
improves GREMLIN’s accuracy further (Fig. 1D). For the top

ranked L/2 predictions (where L is the length of the target
protein), the accuracy of GREMLIN with this simple prior is
higher than that of the next most accurate method for a majority
of targets (Fig. 1E). PSICOV accuracy is higher on average than
DCA [with average product correction (APC); ref. 8] for the first
L/2 predictions but falls below DCA at larger numbers of
predictions. PLMDCA was much slower than other methods
compared here; we therefore compared it to GREMLIN on
smaller datasets in Fig. 2 and SI Appendix, Fig. S7.

Difference in Accuracy as a Function of the Number of Sequences. For
targets that had at least 20 L sequences (using the number of
nonredundant sequences at 90% sequence identity as a measure
of alignment depth), we generated subalignments and recom-
puted predictions for each of these. Fig. 1 F and G show the
average accuracy of the methods across these targets varying the
depth of the alignment: GREMLIN’s pseudolikelihood-based
approach is more accurate than other methods across alignment
depths, even when no prior information is used. Using prior
information further improves the accuracy of predictions, espe-
cially when there are few sequences in the alignment.

The Effects of Prior Information. We further investigated the utility
of predicted secondary structure-based prior (using PSIPRED;
ref. 9) as well as a more powerful prior using SVMCON—

a contact prediction method that uses profile–profile similarity
and secondary structure (10). To reduce the possible overlap
with the protein structures used in the training of PSIPRED and
SVMCON, we evaluated their contribution on a set of hard
targets that are unlikely to have homologs with known structure
(Dataset S2). When no prior information was used, GREMLIN
and PLMDCA had similar accuracy (SI Appendix, Fig. S7) al-
though GREMLIN was 5–20× faster. Using prior information
based on secondary structure and sequence separation improved
accuracy of predictions (Fig. 2A). Using a prior based on
SVMCON improved results further with the resulting method
outperforming SVMCON on most targets (Fig. 2 C and D).
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Fig. 1. Accuracy of contact prediction. Comparison of GREMLIN with DCA (A), PSICOV (B), MIc (C), and GREMLIN when no prior information is used (D). Each
point corresponds to a protein, the axes indicate the accuracy of the top ranked L/2 Cβ−Cβ contacts predicted by the indicated methods. (E) (solid lines)
Average accuracy for varying numbers of predictions; (broken lines) fraction of targets where GREMLIN was more accurate than the indicated method.
Dependence of accuracy of the top L/5 (F) and L/2 (G) predictions on the alignment depth for a subset of 75 targets with deep alignments.
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Integrating the information from profile similarity-based meth-
ods into sequence coevolution-based methods using GREMLIN
thus performs better than either individual method.

Utility and Limits of Sequence Covariance-Based Contact Prediction.
Recent studies (4, 11, 12) have shown that for targets with deep
alignments, the predicted contacts are sufficiently accurate to
predict the 3D structures of proteins. However, because of the
steady increase in the structures deposited in the Protein Data
Bank (PDB; ref. 13), any given target protein of interest is also
likely to have a related protein with known structure. How useful
are covariance-based contact predictions for structure modeling
given the homologous structure information likely to be available?
To address this question, we characterized the difference in

the fit to predicted contacts of comparative models built from
templates and the corresponding native structure for a large set
of proteins with recently solved structures compiled from the
CAMEO and Critical Assessment of Protein Structure Prediction
(CASP10) experiments. If the comparative models fit the con-
tact information as well as the native structure, this added
information is likely to be not useful for model improvement.
Conversely, if the contact information fits the native structure
better, it should be useful for improving comparative models.
For each target in the CAMEO dataset, we queried the PDB for
homologs using HHsearch, and constructed homology models
for the aligned residues from the hits that covered at least 75%
of the protein. Because these models are generated from pro-
teins, they are protein-like in their secondary structure compo-
sition and can be thought of as a sample of the conformational
landscape of protein-like structures around the query protein.
We determined the fit to predicted contacts using GREMLIN
scores (Methods). The GREMLIN score (or any other measure

of structure quality) is only useful for improving starting models
if the native structure has a better score than these models. To
assess this, we computed the difference between the scores of
models and those of the corresponding native structure
(GREMLINΔ) for each of the 329 proteins in the dataset. When
GREMLINΔ > 0 for a model, GREMLIN scores correctly dis-
criminate between native structure and model.
We examined the ability of GREMLINΔ to (i) rank alternate

models and (ii) discriminate between models and the native
structure. The distributions of GREMLINΔ for each target in the
CAMEO protein dataset fall into three categories of interest
based on these criteria. Category I (40% of targets, e.g., Fig. 3A,
Left): GREMLINΔ does not properly discriminate between al-
ternative models, nor between models and the native structure of
the target protein—and hence the contact information is not
useful for structure prediction. Category II (29% of cases; Fig. 3A,
Middle): GREMLINΔ properly discriminates among models, but
not between the best models and the native structure—and hence
could be useful for model ranking, but not for increasing the ac-
curacy of the best models. Category III (10% of cases; Fig. 3A,
Right): GREMLINΔ properly discriminates among models and
between the best models and the native structure—and hence
should be useful for improving comparative model accuracy. A
positive control using L perfect contacts (as ranked by GREM-
LIN) resulted in 97% of targets having correct ranking and dis-
crimination (SI Appendix, Fig. S9) indicating that perfect contact
information is adequate for this task for nearly all targets.
On a subset of 68 targets that had at least 50 models and 20 L

sequences, increasing the alignment depth improved model
ranking, as measured by multiple metrics (SI Appendix, Fig. S5),
approaching its highest value for most targets with as few as 5 L
sequences. This suggests that accurate global ranking is possible
for the majority of targets with at least 5 L sequences. However,
for most targets, HHsearch was already able to identify a ho-
molog with similar accuracy without using this information (SI
Appendix, Fig. S4); a ranking method that uses HHsearch and
GREMLIN scores might improve upon both. This suggests that
although infrequent, category III might represent the case of
most utility for contact-based structure prediction.
Can category III be distinguished from the more frequently oc-

curring categories I and II without knowing the native structure?We
hypothesized that there might be a relationship with the closeness of
the sequences in the input alignment to the native sequence com-
pared with the templates—if the input sequences are closer to the
query sequence, they could be more likely to provide information
specific to its native structure. For each protein in the CAMEO
dataset, we determined the difference between the HHscore of the
alignment with itself and to the closest templateðHHΔÞ. HHΔ is
zero when the query and template alignments are identical; it
increases as the difference in the alignments increases reaching 1
when there is no homolog with known structure.
For targets with high-resolution crystal structures, there is

a clear relationship between the extent the contacts are dis-
criminative for the native structure (GREMLINΔ), and the
closeness of the input sequences to the native sequence ðHHΔÞ.
When HHΔ is small (Fig. 3B, blue bars), GREMLIN discrimi-
nation is rarely better than random, but when HHΔ is large (Fig.
3B, red bars), the GREMLIN score of the native structure is
significantly better than that of models even in cases where the
templates are likely from the same fold. HHΔ can be computed
for a query protein of unknown structure, which makes it a useful
indicator of the utility of covariance information: in cases where
the best model has a high HHΔ, covariance information is likely
to distinguish the native structure from the model. However, this
happens relatively infrequently (4 of 329 CAMEO targets). A
similar analysis on targets from the CASP10 experiment (Dataset
S3) identified 6 of 67 targets with > L sequences that had HHΔ ≥
0.5 for the top-ranked model.
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Fig. 2. Improved contact prediction by integration coevolution and pre-
dicted structure-feature information. Accuracy of the top L/2 predictions
between positions at least 12 residues apart, with and without priors on
a dataset of 73 proteins that do not have homologs of known structure
(Dataset S2; results between positions at least 24 residues apart are included
in the SI Appendix, Fig. S7 A–D). (A) Using secondary structure and sequence
separation priors, GREMLIN achieves higher accuracy than PLMDCA; (C)
SVMCON and GREMLIN predictive accuracy are not highly correlated. (B and
D) Integrating a Support Vector Machine (SVM) based prior into GREMLIN
improves upon both methods alone.
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Frequency of Utility. Our analysis suggests that covariance-based
contact predictions are likely to rank homolog templates accurately
if the alignments contain at least 5 L nonredundant sequences; if
the alignment samples sequences closer to the query than the
homolog, these predicted contacts should be useful for building
improved structure models. We determined how frequently this
scenario occurs by studying the large set of protein families in the
Pfam database.
We classified families with at least 50 residues into three groups

(SI Appendix, Fig. S2): insignificant homology to protein of known
structure, remote homology to known structure, and close ho-
mology to known structure, based on HHsearches against the
PDB (Fig. 4, Left, Center, and Right). We subdivided these groups
based on the number of sequences in the family; the number with
more than 5 L sequences, for which contact predictions are likely
to be accurate, is indicated by the upper green bars. This subset of
families was further subdivided based on HHΔ (Fig. 4, Lower); as
above, anHHΔ> 0:5 (Fig. 4, lower dark green bars) indicates that
an alignment constructed from the sequences in the family is
significantly more similar to itself than to an alignment con-
structed from the closest homolog of known structure in the PDB,
in which case predicted contacts are likely to be useful for struc-
ture prediction. The cases of interest, where predicted contacts
are likely to be accurate and useful, are indicated in red text in the
lower panel. Overall, the number of families for which predicted
contacts are likely to be useful is small but not insignificant (422/
12,452) and corresponds to roughly 14% of the families with ad-
equate number of sequences [Dataset S4; this is likely a conser-
vative estimate—the improvement in accuracy with the SVM
prior could allow improved structure prediction for families with
as few as 2.5 L sequences (SI Appendix, Fig. S8)]. Predicted
contacts are likely most useful for membrane proteins (12, 15),
protein assemblies (16), and other systems where high-resolution
structural information is currently sparse.

Conclusion
We have shown that integrating coevolution and predicted struc-
ture feature-based information using a pseudolikelihood approach
improves accuracy of residue–residue contact prediction. Analy-
sis of the accuracy and utility of predicted contact information

suggests that a large fraction (24%) of the families in the Pfam
database currently have enough sequences for contact pre-
diction to be accurate. This fraction is likely to increase as high-
throughput sequencing continues to rapidly expand the se-
quence databases and methods for contact prediction continue
to improve. However, predicted contacts are likely to be cur-
rently useful for structure prediction only for a relatively small
fraction of these proteins (14%); how this fraction evolves in the
future depends on the relative rates of increase of the sequence
and structure databases.
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GREMLINΔ: GREMLINΔ versus structural similarity of homolog to native structure computed by TM-align (14) (for homologs of all targets with high-resolution
crystal structures < 2.1 Å). When HHΔ≤ 0:5 (blue bars), GREMLINΔ is rarely better than random (green bars, constructed by pooling 100 permutations of
predicted scores for each target). When HHΔ> 0:5 (red bars), GREMLINΔ is significantly positive and contact scores successfully discriminate between native and
homology model even when the homolog is likely to be from the same fold (similarity ∈½0:5; 0:8Þ). Error bars show mean and SD of distributions in all cases.
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Kamisetty et al. PNAS | September 24, 2013 | vol. 110 | no. 39 | 15677

BI
O
PH

YS
IC
S
A
N
D

CO
M
PU

TA
TI
O
N
A
L
BI
O
LO

G
Y

http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1314045110/-/DCSupplemental/sapp.pdf
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1314045110/-/DCSupplemental/sd04.xlsx
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1314045110/-/DCSupplemental/sapp.pdf


Methods
Overview of Computational Method. GREMLIN uses a global statistical model
with the following functional form:

PðX= xÞ= 1
Z
exp

 XL
i = 1

"
viðxiÞ+

XL
j> i

wi;j
�
xi ; xj

�#!
: [2]

When learned fromamultiple sequence alignment of related proteins, asfirst
described in ref. 17, the random variables Xi represent the amino acid
composition at position i, vi is a set of parameters of the distribution that
encodes the individual propensity for each amino acid at position i of the
protein, and wi;j is the set of parameters modeling the statistical coupling in
amino acid propensities between positions i, j of the protein. Z, the partition
function, is a global normalizer to ensure the probabilities sum to 1. This is a
maximum-entropy model and is also referred to as a Markov Random Field (5).

Given a set of aligned protein sequences, one approach to learning v,w is by
matching the moments of the distribution−PðXiÞ,PðXi ;XjÞ− PðXiÞPðXjÞ etc.—to
the corresponding empirical correlations MðXiÞ, F −M′M, etc., observed in the
alignment. Solving these equations exactly results in a consistent learning
procedure—in the limit of infinite data, the learnt parameters tend to the true
parameters. For the model in Eq. 2, however, determining the exact solution is
computationally intractable. DCA uses a Taylor series expansion of Eq. 2 (SI
Appendix, Learning) and a mean-field approximation on the truncated Taylor
series. The parameters under this approximation are then solved by inverting
a covariance matrix (2). PSICOV uses a different sequence of approximations by
first constructing a distribution with binary indicator variables and then using
the approach of ref. 18 to relate the properties of this distribution to those of
a related Gaussian distribution. Although PSICOV does not explicitly match
moments, the resulting learning procedure also estimates Ω; DCA uses a large
pseudocount to ensure that the inverted matrix is not singular (thus being
similar to l2 regularization) and PSICOV directly estimates the inverse with
a mixture of l1 and l2 regularization (3).

The GREMLIN Learning Algorithm. GREMLIN uses a learning procedure based
on optimizing the pseudolikelihood (5) of v, w, which, in log space is ex-
pressed as the sum of conditional distributions as follows:

pllðv;wjDÞ=
XN
n=1

XL
i= 1

log  P
�
xni
��xn−i ; v;w�:

Each conditional distribution models the probability of the observed amino
acid at position i in the nth sequence of the alignment, xni , in the context of
the amino acids at all other positions in that sequence, xn−i and depends on
the parameters v,w as:

P
�
xni
��xn−i ; v;w�= 1

Zi
exp

 
vi
�
xni
�
+

XL
j =1;j ≠ i

wi;j

�
xni ; x

n
j

�!
:

The pseudolikelihood models the conditional distributions of the original
joint distribution instead of the joint distribution itself. The global partition
function cancels out in the conditional distribution leaving only a per-position
local partition function Zi that is trivial to compute making the pseudo-
likelihood tractable; it is also concave in v, w making it easy to maximize.
Estimating the parameters by maximizing the pseudolikelihood is a consis-
tent procedure (19).

Regularization and Priors. The GREMLIN learning objective includes a regu-
larization term of the form:

Rðv;wÞ= λv
����v����22 + X

i;j

λi;jw
����wi;j

����2
2;

where jjðÞjj2 refers to the l2 vector norm of the parameter and λi;jw defines
a Gaussian prior probability with zero mean and variance  =   1=λi;jw on the
entries in wi;j . When all λi;jw have the same value as in ref. 6, the learning
procedure relies completely on the data to encode any information specific
to protein topologies. In data-scarce settings, the accuracy of the learning
procedure can be boosted by varying λi;jw to favor residue pairs that are likely
to be in contact according to our prior knowledge of protein topologies. We
do this using a per-residue pair λi;jw that depends on πði; jÞ, the prior proba-
bility of i, j being in contact as follows:

λi;jw = λc
�
1− λp   logðπði; jÞÞ

�
:

This framework is flexible and allows incorporation of prior information from
various sources. We experimented with two priors: a simple prior based on

secondary structure and sequence separation, πss (SI Appendix, Fig. S6), used
by default and πsvm, obtained by treating the probability of being in contact
as estimated by SVMCON (10) as a prior. Here, ðλc ; λpÞ were set to (0.20, 0.20)
for πss and to (0.20, 1) for πsvm based on tests with a set of targets
from CASP9.

GREMLINΔ. We define the GREMLIN score of a structure as

ScoreðmodelÞ=
P

ði;jÞ∈S
����wij

����
APCfai ;aj

�
dij
�

P
ði;jÞ∈S

����wij

����
APC

;

where jjwij jjAPC is the APC-corrected l2 norm (8) of wi;j as computed by
GREMLIN; dij is the distance between the Cβ atoms of the corresponding
residues in the model with amino acids ai, aj; and S is the set of the top L-
predicted contacts with ji− jj≥ 6. fai ;aj ðdijÞ is 1 if dij is less than a cutoff which
depends on the amino-acid pairs ai,aj, and 0 if dij is very large (Dataset S5).
Using the top L-predicted contacts ranks structures better than using fewer
contacts (SI Appendix, Fig. S3); increasing this to a larger number does not
improve results significantly. We define GREMLINΔ as

GREMLINΔðquery;hitÞ= ScoreðqueryÞ− ScoreðhitÞ
maxðScoreðqueryÞ; ScoreðhitÞÞ :

The GREMLINΔ of a set of models is the lowest GREMLINΔ in the set.

HHΔ. We used the Viterbi scores ðVitðÞÞ as computed by HHalign (20) to
determine if the alignment of sequences was closer to the query protein
than a homolog.

HHΔðquery;hitÞ=Vitðquery;queryÞ−Vitðquery;hitÞ
Vitðquery;queryÞ :

Materials
CAMEO Targets. The CAMEO webserver of the Protein Model Portal (7)
evaluates the accuracy of structure prediction methods against recently re-
leased structures from the PDB on a continuous basis. The ROSETTA structure
prediction software had predicted the structure of 440 targets at the time
we performed this study (first date: 27 April 2012). For targets with fewer
than 700 residues, we generated alignments using HHblits, discarding those
that had less than L-nonredundant sequences and targets that had very
similar sequences (>90% identity) to other targets in this set, resulting in 329
targets (Dataset S1). These targets had a broad diversity of folds, sizes
(mean:253, min:60, max:620) and alignment depths (mean:5516, min:100,
max:30107 nonredundant sequences) reflecting the diversity of the PDB.

CASP10 Targets. We selected the 67 targets (Dataset S3) from the recently
concluded CASP10 experiment with more than L nonredundant sequences.

Hard Targets. To compare the effects of prior information on accuracy, we
collected an additional set of 73 targets that do not have homolog structures
in the PDB (Dataset S2).

Pfam. For protein families in the Pfam database [ref. 21; version 26] with at
least 50 positions, we constructed alignments using HHblits and queried the
PDB for homologs using HHsearch starting with precomputed models (from
the HHSearch database; ref. 22).

PISCES.We accessed the PISCES database of nonredundant protein structures
(23) (accession date November 3, 2012; sequence identity: 80%, minimum
resolution: 2.0 Å, maximum Rfree: 0.25). We used statistics collected on this
database to determine the secondary structure prior, πss (SI Appendix, Fig.
S6) and the amino-acid specific distance function faai ;aaj (Table S5).

DCA. We used the default settings as in (2): x= 0:2; λ= 0:5.

PSICOV. We used the suggested flags that determine ρ to achieve a target
density: -p, -d 0.03.

MIc. MIc is a mutual information-based method that uses sequence profile
information and sequence weighting in its computation of a score referred to
as MIc. All our reported results use the default flags (24).

15678 | www.pnas.org/cgi/doi/10.1073/pnas.1314045110 Kamisetty et al.

http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1314045110/-/DCSupplemental/sapp.pdf
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1314045110/-/DCSupplemental/sapp.pdf
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1314045110/-/DCSupplemental/sapp.pdf
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1314045110/-/DCSupplemental/sd05.xlsx
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1314045110/-/DCSupplemental/sapp.pdf
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1314045110/-/DCSupplemental/sd01.xlsx
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1314045110/-/DCSupplemental/sd03.xlsx
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1314045110/-/DCSupplemental/sd02.xls
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1314045110/-/DCSupplemental/sapp.pdf
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1314045110/-/DCSupplemental/sapp.pdf
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1314045110/-/DCSupplemental/sapp.pdf
www.pnas.org/cgi/doi/10.1073/pnas.1314045110


PLMDCA. We used the default settings of λh = 0:01; λJ = 0:01.

SVMCON. We used SVMCON with the default settings.

Entropy Correction via APC. The average product correction (8) was suggested
as a way of correcting for entropic and phylogenetic biases in the sequence
alignment. Although originally used for mutual information-based scores, it
has also been used with norm-based scores in PSICOV (3). We applied this
correction to GREMLIN and DCA as we found that it uniformly improved their
accuracy; PSICOV, PLMDCA and MIc apply it by default.

Sequence Reweighting. DCA, PSICOV and PLMDCA reweigh sequences in the
input multiple sequence alignment to account for redundancy (2, 3, 6). When
making predictions using GREMLIN, we reweigh sequences in a filtered
alignment (filtered at 90% sequence identity) instead of using the full
alignment.

HHsuite. We used HHblits to build the alignment from the clustered uniprot
database (dated Mar 2012) with the following options in addition to default
settings: -nodiff, -neffmax 20, -n 4, and -maxfilt 100,000. To ensure consistency
of coverage across the alignment, we removed sequences that had more than
25% gaps compared with query and sites that had more than 25% gaps. In
addition, for GREMLIN, we postprocessed the alignment using HHfilter to
generate a nonredundant alignment at 90% sequence identity.Wequeried the
PDB using the global alignmentmode of HHsearch and the latest PDB database
(date: January 1, 2012), which preceded the participation of ROSETTA in
CAMEO and CASP10. We used HHalign to compute Viterbi scores. These
programs are part of HHsuite (version: 2.0.15) (20).
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