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Abstract
Computational design of novel protein binders has recently emerged as a useful tech-
nique to study biomolecular recognition and generate molecules for use in biotechnol-
ogy, research, and biomedicine. Current limitations in computational designmethodology
have led to the adoption of high-throughput screening and affinitymaturation techniques
to diagnosemodeling inaccuracies and generate high activity binders. Here, we scrutinize
this combination of computational and experimental aspects and propose areas for future
methodological improvements.
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1. INTRODUCTION

Molecular recognition underlies all of biological function including
signaling, immune recognition, and catalysis. Molecular structures of thou-

sands of naturally occurring protein interactions illuminate the physical basis

for biomolecular recognition. These structures reveal very high shape com-

plementarity between the interacting surfaces and energetically optimized

interactions, including van der Waals, electrostatic, and hydrogen-bonding

contacts. Computational modeling has been able to recapitulate some of

these structural features to design novel protein–protein interactions (e.g.,

Huang, Love, & Mayo, 2007; Jha et al., 2010; Karanicolas et al., 2011;

Liu et al., 2007), but until recently, the ability to design high-affinity and

specific protein binders of naturally occurring biomolecules without

recourse to existing cocrystal structures was not demonstrated, signifying

gaps in our understanding of biomolecular recognition and frustrating

attempts to program new molecular interactions that impact biological

processes.

Recently, we described a new computational method for the design of

protein binders, which focused on designing the surfaces of natural pro-

teins of diverse folds to incorporate a region of high affinity for interac-

tion with the target protein, and used this method to generate binders of

the highly conserved stem region on influenza hemagglutinin (HA;

Fleishman, Whitehead, Ekiert, et al., 2011; Fig. 1.1). The designs were

found to interact specifically with the desired site, but initial binding

affinities were low. We therefore combined computational design with

in vitro affinity maturation to generate high-affinity binders of influenza

HA that inhibited its cell-invasion function. The affinity maturation pro-

cess also diagnosed inaccuracies in the energy function which underlies

the computational design process, thereby suggesting a future route to

improvements in our understanding of molecular recognition through

the iterative application of de novo design and affinity maturation

(Whitehead et al., 2012). Here, we provide an in-depth description of

the computational and experimental techniques, focusing on what appear

to us as the most fruitful ways to combine the computational and exper-

imental aspects. We suggest areas where additional methodological devel-

opments are necessary for robust and reproducible design of protein

binding to become routine.
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Figure 1.1 The computational design procedure realizes three features of natural pro-
tein–protein interactions: cores of high-affinity interactions with the target surface (A),
favorable interactions among core residues (B), and high shape complementarity (C). (A)
Three hotspot residue libraries (HS1, HS2, and HS3) were computed to form the ideal-
ized core of the interaction with the influenza hemagglutinin (HA) surface (gray). HS1
comprises two major configurations for a Phe aromatic ring and is supported by
HS2, which contains the hydrophobic residues Phe, Leu, Ile, Met, and Val (green, purple,
navy blue, cyan, and light brown, respectively), and HS3 comprises Tyr conformations. In
the specific case of design of HA binders, the geometric constraint on HS2 is laxer than
on the other hotspot positions and many different residues can be accommodated
there. Residues from each hotspot-residue library interact favorably both with the target
HA surface and the other hotspot-residue libraries, recapitulating two features common
to many natural complexes: a core of highly optimized interactions with the target and
internally stabilized contacts between key sidechains. (B) Cocrystal structure of HB80
and the HA surface. The hotspot residues are shown in dark green, realizing one of
the energetically favorable combinations seen in panel a (comprising a Phe, Ile, and
Tyr, for HS1, HS2, and HS3, respectively). (C) Common to many natural protein interac-
tions, the surfaces of the designed and target proteins fit together snugly in a high
shape complementary configuration. All molecular graphics were generated using
PyMol (DeLano, 2002).
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2. COMPUTATIONAL DESIGN OF BINDERS USING NOVEL
SCAFFOLDS
Surveys of the molecular structures of protein–protein interactions

have underscored the importance of high shape complementarity at the

interface with many molecular structures showing interface-packing densi-

ties as high as those seen in protein cores (Lo Conte, Chothia, & Janin,

1999). Another feature of many protein–protein interfaces is energetically

highly optimized interactions at the core of the interface, typically compris-

ing long sidechains such as Tyr, Gln, and Leu. Such interaction hotspot

regions contribute a large share of the binding energy (Bogan & Thorn,
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1998; Clackson & Wells, 1995). In our preliminary design attempts (where

the above features of optimized cores and high shape complementarity were

the main selection criteria), we noted that the resulting designs still failed to

embody another key feature of natural binders: when compared to natural

binding surfaces, predicted hotspot residues on designed surfaces did not

form appreciable stabilizing interactions with other structural elements in

their host monomer (Fleishman, Khare, Koga, & Baker, 2011). The relative

lack of stabilizing structural features in designed surfaces suggested that the

designed surfaces were conformationally less rigid. We suggested that

restricted sidechain plasticity was an important feature of binding surfaces,

reducing entropy loss upon binding and precluding the reorganization of

the binding surface into configurations that are incompatible with bind-

ing the target (Fleishman, Khare, Koga, et al., 2011). The organization of

many natural hotspot regions into spatial clusters is potentially a negative

design feature, disfavoring alternative conformations of the binding surface;

due to spatial clustering, these alternative conformations are likely to intro-

duce rotameric strain, voids, or clashes in the unbound protein. These three

structural features—high shape complementarity, energetically optimized

interactions between core residues on the binder with the target, and the

clustering of these core residues—serve as the basis for the computational

design method (Fleishman, Corn, Strauch, et al., 2011), and in the follow-

ing, we discuss how each feature is realized in a computational design frame-

work (Fig. 1.1).

The computational method was implemented as an extension of the

Rosetta software suite for macromolecular modeling (Das & Baker,

2008). Rosetta provides implementations of many key functionalities in bio-

molecule structure prediction and design, providing a straightforward means

to access sophisticated computational methods. Rosetta and the methods

described here can be freely obtained by academic users through the

RosettaCommons agreement.

3. TARGET SELECTION

In selecting a target for designing inhibitors, a number of structural and
experimental considerations need to be taken into account. The combined

computational–experimental approach that we describe requires that the

protein that is targeted for binding is characterized with high-resolution

molecular structures, is stable, and can be produced in good yield and purity

for binding measurements. It is important to have a protein/small molecule
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that binds at the target surface. Such preexisting binders provide valuable

information onwhether the target surface forms correctly in experiment, all-

owing confirmation that the designed binders target the intended site by serv-

ing as positive binding controls and as competitive inhibitors of the designed

binders. Such preexisting binders might not be available for all desired appli-

cations. In such cases, amino acid substitutions at the target surface that disable

binding to the designedproteins yet preserve the overall structure of the target

can provide an alternative control for binding at the target site. Our compu-

tational strategy, which generates exposed hotspot sites of interaction, is best

equipped to target concave protein surfaces. The conserved epitope of the

soluble ectodomain of HA common to Group I influenza viruses exhibited

all of these features: influenza HA is well characterized biochemically and

structurally, it can be produced recombinantly in insect cells, and there exist

multiple antibodies that bind at or near the epitope to serve as positive con-

trols in experiments (Corti et al., 2011; Ekiert et al., 2009, 2011; Sui et al.,

2009). It is also an important target for drug design, as binding in this region

has been linked to preventing HA-mediated fusion of the viral and host

endosomal membranes, thereby blocking viral entry into the cytoplasm of

the host cell (Ekiert & Wilson, 2012).

4. GENERATING AN IDEALIZED CONCEPT OF THE
HOTSPOT
A central element of the computational method is the construction of

a spatial region in which high affinity, sidechain-mediated interactions are

formed between the designed binder and the target protein; the designed

sidechains should also be stabilized through intrachain interactions on the

designed protein. As different surfaces on scaffold proteins for design present

different ways in which to incorporate such key residues, we start the design

process by precomputing a spatially clustered set of residue combinations

(Fig. 1.1A). To date, we have generated binders with two to four hotspot

positions, but the methods described below could be used to specify any

number of hotspot positions. We previously provided examples based on

natural protein–protein interactions for how to generate a hotspot concep-

tion when molecular structures of bound components are available

(Fleishman, Corn, Strauch, et al., 2011). In the following, we describe in

detail how to generate a hotspot region for a site that is known to serve

in protein–protein interactions, but with minimal or no recourse to the nat-

ural binding mode; this approach was used to generate the hotspot region for
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HA binding (Fleishman, Whitehead, Ekiert et al., 2011) and provides a way

to generate protein binders with desired structural and biophysical properties

without the limitations of naturally occurring binders (Fig. 1.1). To accom-

plish this, we docked aromatic residues against the hemagglutinin Trp21 on

chain 2 of the HA (HA2) (HA residue numbering corresponds to the H3

subtype sequence-numbering convention) and isolated two major confor-

mations of a Phe residue (other aromatic residue identities failed to produce

energetically optimized configurations with respect to the target surface).

For each Phe residue, we computed positions for backbone and Cb atoms

such that the aromatic ring moieties of the computed Phe residues inter-

sected with the energetically optimized configurations computed in the pre-

vious step (inverse rotamers) (Fig. 1.1A); this step produces approximately a

dozen different conformations for each of the two major configurations of

the aromatic ring. All of these spatially clustered residues are saved in a

hotspot-residue library for use in subsequent scaffold design steps. The

HA target site is quite hydrophobic, and we extended this hotspot with

hydrophobic residues (Phe, Leu, Ile, Met, Val) all of which formed favorable

interactions both with the target HA surface and the previously computed

hotspot Phe. A third Tyr hotspot position was extracted from antibody-

bound structures of HA (Ekiert et al., 2009). This last hotspot residue was

used in the design calculations that resulted in the binder codenamed

HB80 (Fleishman, Whitehead, Ekiert, et al., 2011), but this design strategy,

which included three hotspot residues, was found to be very restrictive

(eliminating many potentially favorable designs), and the binder HB36

was computed without the Tyr hotspot residue. Once residue identities

for the hotspot region were defined, the rigid-body conformations of these

residues with respect to the target HA surface and to one another were com-

putationally optimized by subjecting them to rigid-body docking and min-

imization simulations using Rosetta, and the lowest-energy conformations

were isolated. Some of the hotspot-residue combinations, which appeared

feasible and favorable at the initial hotspot construction phase, such as Val

and Phe at HS2, failed to produce designed proteins with favorable energetic

and structural characteristics, underscoring the importance of formulating a

diverse hotspot concept. In summary, a hotspot region can be computed

based on existing bound structures (Fleishman, Corn, Strauch, et al.,

2011) or based solely on the molecular structure of the target protein

(Fleishman, Whitehead, Ekiert et al., 2011). It is important to note that at

this point of method development producing a hotspot concept requires

human intervention in choice of target site and residue identities. Part of
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the reason why this crucial step has not been automated stems from the fact

that the energetics of residue binding to the target surface within the context

of an entire protein are poorly modeled when these residues are dismem-

bered from a protein as in the case of building a hotspot. We overcame this

difficulty by testing diverse hotspot concepts as explained above. Recently, a

method has succeeded in recapitulating natural hotspot residues and may

serve in future design studies to automatically generate hotspot regions from

scratch (Ben-Shimon & Eisenstein, 2010).
5. SELECTING SHAPE COMPLEMENTARY SCAFFOLD
SURFACES FOR DESIGN
Shape complementarity is a key feature of biological protein–protein

interactions (Lo Conte et al., 1999). Although certain protein families recur

in biology as protein interaction modules (e.g., SH3, ankyrin, immunoglob-

ulins; Pawson & Nash, 2003), we reasoned that using more scaffolds for

design would increase the chances of designing proteins that exhibit high

shape complementarity. We therefore used a set of more than 800 unique

protein structures deposited in the Protein DataBank as scaffolds for design

(Fleishman, Whitehead, Ekiert, et al., 2011). This library of protein struc-

tures was selected to improve the chances that the proteins would be easy to

experimentally express and test; they contain no disulfide bridges, are rela-

tively small (<250 amino acid residues), contain no small molecule ligands,

and are predicted to be monomeric. This scaffold library could be period-

ically updated with newly deposited structures. Another potential extension

may be to include structures of proteins containing disulfide bridges, as those

may present stable scaffolds for design. A number of computational methods

have been described that capitalize on the high shape complementarity of

interacting molecular surfaces to predict the proteins’ mode of interaction

(e.g., Gabb, Jackson, & Sternberg, 1997; Katchalski-Katzir et al., 1992).

In a step independent of the hotspot construction step above, we use an effi-

cient docking method called PatchDock (Schneidman-Duhovny, Inbar,

Nussinov, & Wolfson, 2005) to isolate hundreds of unique configurations

for each scaffold protein that show high shape complementarity to the target.

The PatchDock software is run externally to Rosetta as a precomputation

step and the output files from PatchDock are read by the RosettaScripts

(Fleishman, Leaver-Fay, Corn, et al., 2011) module of Rosetta to set up

the configurations with which design simulations start.
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6. INTERFACE DESIGN

At this point in the protocol, we have obtained hundreds of thousands
of coarse-grained binding configurations of the scaffolds in the library docked

against the target epitope. The next step is to computationally determine

which scaffold surfaces can incorporate hotspot residues. We developed

two approaches for placing the hotspot residues on the scaffold protein

(Fleishman, Corn, Strauch, et al., 2011). The approaches either translate

the scaffold protein such that residues in the vicinity of the precomputed

hotspot residues align their backbone NdC and Ca–Cb vectors perfectly

with those of the hotspot residue (scaffold placement) or by starting from

the PatchDock configuration and replacing a scaffold position of appropriate

geometry with one of the hotspot residues in the library (hotspot placement).

The scaffold placement approach reproduceswith high fidelity the geometric

relationships of the precomputed hotspot residue with the target surface,

whereas the hotspot placement strategy allows formore slack in incorporating

the hotspot residue. Choice of which algorithm to use in placement depends

on the physicochemical nature of the hotspot positions: residues that form

geometrically constrained interactions, such as hydrogen bonds should be

positioned with scaffold placement, whereas sidechains that form hydropho-

bic interactions can be incorporated using hotspot placement.When applied

sequentially, these two algorithms can be used to test the energetic compat-

ibility of every combination of hotspot residues from all hotspot-residue

librarieswith the scaffold protein.This is an exhaustive approach, but one that

is poorly scalable andwe have found that for three ormore hotspot positions a

computationally less demanding strategy is needed. We developed an alter-

native simultaneous-placement procedure. This procedure focuses design

calculations on a set of scaffold residues that provide the most optimal geo-

metric compatibility with the hotspot-residue libraries and designs this set

of residues simultaneously. Since this procedure does not iterate over each

combination of hotspot residues defined in the hotspot-residue libraries, it

is much more scalable and allows the design of, in principle, as many hotspot

positions as needed. In practice, combinations of these three methods can be

used for any design task. For instance, the accurate scaffold placement proce-

dure would be applied to hotspot positions that are geometrically very con-

strained (e.g.,HS3 in Fig. 1.1A),whereas all other hotspot positionswould be

designed with the simultaneous-placement strategy.

Every target surface has unique structural features that demand a tailored

computational design protocol. We implemented all of the above algorithms
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within the RosettaScripts framework allowing the protein designer to define

specific constraints and filters in a versatile XML-style scripting language

(Fleishman, Leaver-Fay, Corn, et al., 2011). For example, the HA target

surface contains a recessed hydrophobic residue (Trp21) and an exposed

backbonecarbonyl. Followinghotspot-residueplacement,we found thatmany

of the designs do not packwell against Trp21 or hydrogen bondwith the back-

bone carbonyl. In the RosettaScripts framework, this problem was easily put

right, without additional programming of the underlying Cþþ source code,

by adding filters that prune modeling trajectories if these two constraints were

not satisfied immediately following the hotspot placement steps. The

RosettaScripts for running the HA design protocol and additional scripts for

recapitulating a diverse set of natural complexes have been published providing

computational design programs for a broad spectrum ofmolecular surfaces that

could be used or modified to target other desired surfaces (Fleishman, Corn,

Strauch, et al., 2011; Fleishman, Whitehead, Ekiert, et al., 2011).

Following the design of the core hotspot region, we use iterations of

RosettaDesign and minimization (Kuhlman & Baker, 2000) to optimize the

sequence of the scaffold protein for binding the target, while keeping the

hotspot region fixed. The computational design strategy described here has

been found to recapitulate natural binding interfaces with high sequence

and conformational recovery rates (Fleishman, Corn, Strauch, et al., 2011).

In the design of HA binders, we used small backbone motions to further opti-

mize the binding interface, but in retrospect found that designed proteins that

bound the target in experiment had very rigid backbones,where thesemotions

had little effect (Fleishman, Whitehead, Ekiert, et al., 2011). In unpublished

design work, we similarly found that all designs that bind their targets as

intended contain a very high fraction of rigid secondary structural elements

at the binding surface. The question of whether and what type of backbone

motions are useful for interface design is the subject of ongoing research

(Humphris&Kortemme,2008;Zhang&Lai, 2012) andwill impact our design

capabilities as well as our understanding of the intimate connections between

protein stability, conformational flexibility, and molecular function.

7. YEAST CELL-SURFACE DISPLAY AS A SCREENING
METHOD FOR DESIGNED BINDERS
The advent of custom and affordable DNA synthesis allows the testing

of scores of potential designs and greatly expands the diversity of designs that

canbe considered.This added capability necessitates amatching experimental

method to screen for interactions.While every screening method to identify
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putative binders has its advantages and pitfalls, the ideal features of a screening

method would be the following: that the throughput of the experimental

screening method be matched to that of the computational design process,

that diverse proteins can be robustly expressed, that weak binders (dissocia-

tion constants in the micromolar range; designs with fast kinetic dissociation

rates) be positively identified, and that false negatives and false positives

be minimized. Screening methods previously used by design groups in

published and unpublished work included pull-down approaches, ELISA

with phage display (Gu et al., 1995), cell extracts, or purified proteins

(Karanicolas et al., 2011), and purification followed by binding verification

using surface plasmon resonance or fluorescence polarization. After critically

evaluating these alternatives, we found yeast cell-surface display coupled to

flow cytometry as bestmatched to our screening needs. Yeast cell-surface dis-

play is well documented methodologically (Chao et al., 2006). There is a

demonstrated correspondencebetweendissociation constants (KD)measured

using yeast display and in vitro measurements on purified proteins up to

KD¼100 nM (Colby et al., 2004). It is possible to improve detection limits

by increasing the effective affinity using avidity between the yeast surface and

naturally oligomeric targets (like the trimeric influenza HA) or by creating

oligomeric complexes of the target protein using a biotin-conjugated target

protein bound to streptavidin (Chao et al., 2006). There are published pro-

tocols for screening as well as directed evolution approaches for affinity mat-

uration. Finally, using the yeast display format described below, we have

found that more than 80% of the designed proteins express robustly. In a

side-by-side comparison, only 50% of these proteins could be solubly

expressed in BL21 bacterial cells under standard expression protocols

(Studier, 2005). Yeast display requires access to a flow cytometer, and afford-

able cytometers have been marketed in recent years, with many academic

institutions having dedicated flow cytometry facilities.We recommend using

flow cytometry for monitoring binding events. Although there is a literature

on identifyingweak interactions using yeast display coupled tomagnetic bead

screening (Ackerman et al., 2009), in our hands these systemswere less robust

for screening than flow cytometry. For reproducibility by other laboratories,

we havemade yeast display expression plasmids encoding 71 different designs

available through AddGene (www.AddGene.com).

As S. cerevisiae surface-expressed proteins could be glycosylated by the

cellular machinery, care must be taken to remove potential N-glycosylation

consensus sequences near the designed surface. Unpaired surface exposed

cysteines are also removed from the designs. We note that yeast are able

http://www.AddGene.com
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to express complicated multidomain and disulfide-linked proteins on their

cell surface; thus the scaffold set used in the HA design effort could be

expanded in future design efforts to include more diverse scaffolds.

One consideration of any screening method is the choice of a positive

control to monitor binding events. Positive binding controls are important

to ensure that the screen is run correctly; an ideal positive control would bind

the targeted surface at the weak limits of detection. In our implementation,

we chose the CR6261 antibody fragment (Fab) that was previously found to

bind the targeted HA surface (Throsby et al., 2008). We created a CR6261

scFv using splice overlap extension PCR, displayed this construct on the cell

surface, and verified binding against biotinylated HA. HA was biotinylated

either through a genetically encodedAvi-tag or chemically usingNHS-Ester

chemistry (Pierce). We used alanine-scanning mutagenesis on multiple anti-

body residues directly contacting HA and combined several mutations to

significantly reduce the affinity of the CR6261–HA interaction.

With this experimental setup in place, screening could be carried out at a

high pace. Four days after DNA-encoding designs arrived, designs could be

tested for binding. As the method is efficient, dozens of designs could be

tested in a single afternoon by following the screening procedure in Chao

et al. (2006). Once we isolated designs that bound the target, the yeast dis-

play system allowed rapid implementation of controls, including testing the

nondesigned wild-type scaffold for binding and competitive binding exper-

iments with the soluble CR6261 Fab. Combined, these controls were used

to rapidly screen out those scaffolds that bound natively to the target and to

cull designs that bound the target but not at the desired (and designed) loca-

tion (Fig. 1.2).

8. AFFINITY MATURATION

Limitations in the energy function and design method resulted in
designs that initially bound specifically but rather weakly to the target site.

We wanted to identify amino acid substitutions that conferred tighter bind-

ing to the target. Identification of such substitutions is important for three

reasons: by improving the affinity of our designs toward the target, we

can improve biologically relevant function; consistency between the substi-

tutions uncovered through affinity maturation and the designed model

structures can affirm the designed binding mode, even in the absence of

experimentally determined molecular structures of complexes, which are

sometimes difficult to obtain; identifying substitutions that are clearly better
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Figure 1.2 Yeast cell-surface display can be used to experimentally screen and test the
precision of designed protein binders. (A) Screening for interactions is accomplished by
incubation of a yeast-displayed designed protein (circle) with a purified, biotinylated
target protein (gray stalk and head). After secondary labeling with a streptavidin-linked
fluorophore, binding is measured by increased fluorescence of yeast cells as monitored
by flow cytometry. (B) Precision of the designed binders can be tested using (left panel)
competitive inhibition of the target surface with a small molecule/protein binder (tear-
drop) of the target surface and (right panel) coincubation of the target protein with a
yeast-displayed scaffold from which the design was derived. The designed protein
binds the targeted surface only if both experiments result in no increase in fluorescence.
(C) Affinity maturation using yeast cell-surface display can further validate the accuracy
of the design. Identification of mutations conferring affinity increases at the designed
surface (left panel) suggests precision of the design if the improvements can be ratio-
nalized posteriori. Conversely, mutations conferring affinity increases distal to the
designed surface (right panel) provide important clues that the protein is not binding
the target as designed.
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than the starting design helps, by retroactive rationalization, to improve the

design process and identify inaccuracies in the energy function (Fig. 1.2).

We found yeast display coupled to flow cytometry to be well equipped

for the affinity maturation process, as our binding screen could be readily

reconfigured for cell sorting. In the affinity maturation protocol we

implemented, single substitutions conferring large increases in affinity were

isolated. Libraries encoding design variants could be generated either

through site saturation mutagenesis (SSM) by the method of Kunkel

(1985) or by error prone PCR (epPCR) (Genemorph II random mutagen-

esis kit, Stratagene) at low mutational loads (2–4 mutations/kb DNA),
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followed by high efficiency transformation into S. cerevisiae EBY100 cells

(Benatuil, Perez, Belk, & Hsieh, 2010). Constructs were combined with

the yeast display backbone by homologous recombination, obviating a sub-

cloning step. Retrospectively, the choice of mutagenesis procedure was not

essential, as both SSM and epPCR approaches yielded the same consensus

mutations. This may reflect the small size and high backbone rigidity of the

designed scaffold proteins; with other scaffolds, the choice of library con-

struction method may be significant. We recommend epPCR as it is con-

siderably less laborious than SSM, and mutations are located throughout the

protein sequence, not just at the designed epitope. This feature is particularly

important for removing potential designs from consideration, as affinity-

enhancing substitutions distal from the designed binding site provide clues

that the design might not bind in the intended mode (Fig. 1.2). Care must be

taken to sort the library under conditions where a single clone cannot dom-

inate the library because in this case the mutation(s) responsible for increased

affinity cannot be unequivocally determined. In our implementation, we

used two (at most three) sorts of epPCR mutagenesis libraries at a sorting

threshold of 5%. Sorting gates were set to collect cells with the tightest bind-

ing to the target protein. Following sorting, we ensured that the library was

improved relative to the starting sequence by measuring dissociation con-

stants using yeast cell-surface display against the soluble target protein.

We then plated yeast cells and sequenced individual clones using yeast col-

ony PCR to extract the DNA. Once affinity-enhancing substitutions were

verified, they were directly incorporated into the original design framework,

eliminating substitutions that might have arisen through genetic drift, for

example, on protein surfaces away from the binding surface. The entire pro-

cedure of generating a library, selecting and identifying beneficial mutations,

and testing them in a clean background took a little over 2 weeks.

9. WHAT WORKS, WHAT FAILS, AND WHAT IT MEANS

De novo design of protein binders is in its infancy. We have
implemented a computational design strategy, which produced two different

designed proteins that bound with atomic precision at the desired protein

surface (Fleishman, Whitehead, Ekiert, et al., 2011). In unpublished work

using the same methodology, we generated several binders of other protein

targets, demonstrating the method’s robustness and scope. By comparing the

relatively small number of designed proteinswhich bind their targetswith the

much larger number of designswhich fail to do so,we have learned important
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lessons on biomolecular recognition (Fleishman, Whitehead, Strauch, et al.,

2011). Similarly, by exhaustive characterization of working designs, we have

been able to uncover weaknesses in the energy function used in design. We

anticipate that the scrutiny of our design efforts by such computational and

experimental methods will advance the ability to design new interactions

in the future, and we have published the coordinates of all designed com-

plexes that were experimentally tested (Fleishman, Whitehead, Ekiert,

et al., 2011; Fleishman, Whitehead, Strauch, et al., 2011). In the following

paragraphs, we describe two complementary approaches that we undertook

inorder to improveour understandingofmolecular recognition anddiagnose

areas for future improvements (Fig. 1.3).

To get an unbiased view of structural features that distinguish computa-

tional designs from naturally occurring protein–protein interfaces, we com-

piled 88 designed proteins that expressed well and were tested for binding

against three target proteins (HA, the human IgG1 Fc region, and an acyl

carrier protein from Mycobacterium tuberculosis) (Fleishman, Whitehead,

Strauch, et al., 2011). These designs did not bind their targets detectably.

This set of protein structures was provided to 28 research groups that par-

ticipated in the Critical Assessment of PRedicted Interactions experiment,

and each group was asked to develop and disclose a computational metric for

discriminating the nonbinding designs from naturally occurring interfaces.

One of the surprising results came from an analysis by Haliloglu and

coworkers revealing that many of the failed designs had binding surfaces that

were predicted to be highly mobile and suggesting that these surfaces would

not form as designed in experiment. This result underscores the importance

of rigidity in functional surfaces: where such rigidity is not provided by the

protein’s secondary structure, the design effort was largely in vain. This

insight has been translated to a simple computational filter, which tests

whether the scaffold surface for design is embedded within the scaffold pro-

tein to stabilize it, demonstrating how de novo design, experimental charac-

terization, and posteriori analysis can be used to diagnose and improve our

understanding and ability to design binders. A recent cocrystal structure

from another de novo protein binding study showed that plasticity either

at the level of the sidechains or the backbone can lead to proteins which rec-

ognize their targets through quite different binding modes than those that

were planned (Karanicolas et al., 2011) and might also have a role in the

reduced effectiveness of de novo designed enzymes (Fleishman & Baker,

2012). Two directions for future research are consequently how to stabilize

backbones that are poorly embedded in the scaffold protein, such as
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Figure 1.3 A schematic for how computation and experiment have been integrated to
probe the physical basis for molecular recognition and to generate novel proteins of
biomedical potential. Experimental screening of designs using yeast cell-surface display
leads to their classification as active or inactive. Inactive designs can be compared to
native protein interfaces (arrow pointing left): metrics that discriminate inactive designs
from natural proteins can be used to formulate automated computational filters to
prune unpromising designs in future design efforts and highlight areas for future meth-
odological improvements in design. By contrast, successful designs (arrow pointing
right) can be experimentally probed for detailed structure–function relationships using
newly developed next generation sequencing technologies. Here, a plot showing
enrichment ratio (a proxy for affinity) as a function of point mutation is shown for
the interface stretch of one of the designs. This wealth of information can be used
to identify limiting approximations in the energetic potential underlying the design cal-
culations. By identifying mutations that clearly improve binding, this dataset can also be
used to program high affinity and specificity binders from these initial designs that
could subsequently be used as therapeutics. The left-hand side of panel was reproduced
with permission from Fleishman, Whitehead, Strauch, et al. (2011), and right-hand side with
permission from Whitehead et al. (2012).

15Computational Design of Novel Protein Binders and Experimental Affinity Maturation

Author's personal copy
unstructured regions, and how to predict the stability of designed surfaces.

This is particularly relevant for efforts to design antibodies or antibody-like

scaffolds for therapeutically relevant targets.

In a second approach, we sought to fully characterize the effects on bind-

ing affinity and specificity of substitutions on the designed binders. Using the

affinity maturation approach mentioned above, we had identified a handful

of substitutions that increased the affinity of our designs to HA (Fleishman,
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Whitehead, Ekiert, et al., 2011). The substitutions that increased affinity

delineated potential shortcomings in the energy model that undergirds

the design calculations, yet the data were too sparse to use our findings to

improve the computational design process. To understand more completely

the shortcomings of our energy model, we extended a recently described

approach for experimentally mapping the affinity contributions of residues

at binding interfaces using high-throughput sequencing to encompass much

larger sets of positions (Araya & Fowler, 2011; Fowler et al., 2010). Very

briefly, we transformed SSM libraries encoding all possible single point

mutants of our designs into yeast and used fluorescence-activated cell sorting

to select variants that bound the target protein HA (Whitehead et al., 2012)

We then used Illumina DNA sequencing to sequence the entire population

of design variants before and after selection. In so doing, a comprehensive

sequence–function map for nearly every possible single point substitution

in HB36 and HB80 was generated. As these maps were generated using

selections for binding of H1 and H5 HA subtypes and at differing selection

stringencies, for both designs we were able to determine the sequence deter-

minants for affinity and subtype specificity.

For both designs, the sequence–function map identified many affinity-

enhancing substitutions, and computational modeling indicated that a large

fraction of these improved the long-range electrostatic complementarity of

the designed binders with the HA surface. Long-range electrostatics effects

are notoriously difficult to model (Fleishman& Baker, 2012), and the unprec-

edented amount of experimental data generated by this experimental approach

provided an opportunity to test a variety of different electrostatic models, ulti-

mately leading us to develop a rapidly computable static Poisson–Boltzmann

electrostaticsmodel that canbeused as a final step in thedesignprocess to ensure

that the designed proteins exhibit high charge complementaritywith the target

molecular surface. These maps enabled us to improve dissociation constants of

both designs againstHA to picomolar levels through the combination ofmany

of these beneficial substitutions. The best design variant neutralized two differ-

ent H1 influenza strains at doses comparable to the CR6261 antibody and is

currently being tested for influenza abatement in live animal models. Thus,

the combination of de novo protein design with comprehensive sequen-

ce–function mapping by deep sequencing can be used to generate proteins

of potential therapeutic relevance.

Computational design of interactions holds great promise for extending

our understanding of biomolecular recognition and ability to design novel

proteins with useful molecular functions (Fleishman & Baker, 2012).
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Although the field is young, computational design has already generated

proteins with antiviral potential. Pressing areas for future development

include a more general method for modeling of a hotspot region, the ability

to design conformationally stable loop regions in functional sites, and

improvements in the accuracy of the energy function. These abilities will

open the way to routine and robust generation of novel biomolecules for

biomedicine, biotechnology, and research.
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