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Automated protein model-building tools developed for  
X-ray crystallography9,10 are widely used in structure determina-
tion from maps with resolution better than 3 Å. These methods  
separate backbone tracing and side-chain assignment, with density 
features largely guiding side-chain identification. Consequently, at 
resolutions worse than 3 Å, where side-chain density is mostly indis-
cernible, these approaches generally fail. Several de novo model- 
building methods targeted to cryo-EM have been developed 
for maps with resolution ranging from near-atomic (3–5 Å) 
to medium resolution (5–10 Å) (refs. 11,12). Although these  
methods are powerful in identifying the protein topology given 
a map, they have poor recovery, often <50%, of correct sequence 
registration11,12.

Here we describe a novel de novo model-building approach for 
cryo-EM maps at 3- to 5-Å resolution. Our approach combines 
the agreement of sequence-derived predicted backbone confor-
mations to local density with the agreement of the sequence to 
side-chain density in order to accurately assign sequence into den-
sity. On a benchmark set of nine experimental cryo-EM maps at 
near-atomic resolution with previously determined structure and 
a previously unsolved map for the 660-residue contractile sheath 
protein of the type VI secretion system from Vibrio cholerae, we 
show that high-accuracy models can be obtained without knowl-
edge of detectable structural homologs.

Our approach for de novo interpretation of near-atomic-resolution  
density maps consists of three steps: (i) matching sequence-based 
local backbone conformations into the density map, (ii) identifica-
tion of a maximally consistent subset of these fragment matches 
and assembly into a partial model and (iii) completion of the partial  
model using density-guided sampling and all-atom refinement (Fig. 1a).  
In the first step, for overlapping nine-residue windows of amino acid 
sequence, we identify segments (‘fragments’) of solved protein structures  
with similar local sequences and predicted secondary structures, 
analogous to the fragments used in Rosetta de novo structure  
prediction13. For each fragment, a translation-rotation search  
identifies placements with good map agreement after optimizing 
side-chain conformations; only a small subset of these placements 
are located near the native position (r.m.s. deviation (RMSD) < 2.5 Å). 
To identify these correct placements, we search a mutually compat-
ible subset of fragment placements, using a score function that—in  
addition to preferring fragments that fit well into density—favors 
fragment pairs with (i) the same residue in the same place,  
(ii) residues nearby in sequence nearby in space and (iii) no two  
residues occupying the same space. Monte Carlo simulated annealing  
(MC-SA) guided by this score function finds the maximally  
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We present a de novo model-building approach that combines 
predicted backbone conformations with side-chain fit to 
density to accurately assign sequence into density maps. this 
method yielded accurate models for six of nine experimental 
maps at 3.3- to 4.8-Å resolution and produced a nearly 
complete model for an unsolved map containing a 660-residue 
heterodimeric protein. this method should enable rapid and 
reliable protein structure determination from near-atomic-
resolution cryo-electron microscopy (cryo-em) maps.

Model building is a key step in macromolecular structure deter-
mination. Whereas most atomic-resolution structures are solved 
using X-ray crystallography, single-particle cryo-EM has emerged 
as a powerful tool in determining electron density maps of large 
and high-symmetry particles to near-atomic resolution (3–5 Å;  
ref. 1). Recent advances even allow cryo-EM to reach these 
resolutions from smaller particles with low or no symmetry2–4. 
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de novo model building into near-atomic-resolution cryo-EM 
density maps. Structural interpretation of cryo-EM maps typi-
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achievable from near-atomic-resolution cryo-EM density, starting 
from a homologous structure of the correct topology6. However, 
when there are no previously solved structures of homologous 
proteins, de novo model building must be carried out. Currently, 
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time consuming and error prone.
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consistent subset of fragment placements from this larger set. 
Fragment matching and MC-SA assembly are applied iteratively  
until >70% of the sequence has been assigned into density. Each  
iteration places fragments from previously unassigned sequence  

positions of the sequence into previously unoccupied regions in 
density (Fig. 1b). Finally, the partial model from the final iteration 
is completed through rebuilding and all-atom refinement using 
RosettaCM14 guided by the experimental density data.
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figure � | Protocol overview. (a) First, for a nine-residue window centered on each position in the sequence, representative backbone conformations 
(fragments) are collected and docked into the density map. Second, the resulting fragment placements are then evaluated using a score function 
consisting of four terms: a density correlation term assessing the agreement of fragment and map; an overlap term favoring fragment pairs assigning the 
same residue to the same location; a closability term favoring fragment pairs close in sequence that are close in space; and a clash term preventing two 
residues from occupying the same place. Third, from the candidate placements (green squares), Monte Carlo simulated annealing finds a set of fragments 
(orange squares) optimizing the score function; a null placement (empty squares) may be assigned in positions where no good placements have been 
identified. Fourth, a partial model is assembled by combining fragment placements from multiple Monte Carlo trajectories. Steps 1–4 are carried out 
iteratively until ~70% of sequence is covered. Finally, unassigned regions in the final partial model are completed using density-guided loop sampling 
followed by all-atom refinement. (b) Model building for the 20S α-subunit in a 4.8-Å resolution cryo-EM map required three iterations, illustrated in the 
three rows in the figure. The far left column shows the density map used for the corresponding iteration after density from the previous round’s partial 
model was masked out. The next column shows the assembled partial models after Monte Carlo sampling (colored blue at the N terminus to red at the  
C terminus). Center, fragment placement results after translation and rotation search. The x axis covers the sequence of the protein, and each black point 
represents a single fragment placement; the y axis indicates the distance of the fragment placement from the native conformation. Pink points indicate 
fragments chosen to assemble the partial model, and the gray shading shows residues covered in the partial model. Secondary structural elements in the 
native protein are indicated above the plot: H, helix; S, strand. Right, the lowest-scoring Monte Carlo trajectories (below the dotted line) are combined 
to provide the starting model for the next iteration. Each point represents the fragment assignment of an independent search trajectory, colored by 
number of total fragments placed. The x axis indicates the percentage of fragments placed within 2.5-Å RMSD from the native configuration; the y axis 
shows the score with the fragment compatibility function. The horizontal dashed line shows the score cutoff used for partial model generation.
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We tested our method on a benchmark set of nine proteins 
whose structures have been determined through cryo-EM (TMV, 
TRPV1, FrhB and BPP1) or X-ray crystallography (20S-α, FrhA, 
FrhG, VP6 and STIV). These proteins range in size from 155 to 
397 residues, include different fold types and have experimen-
tal cryo-EM maps varying in resolution range from 3.3 to 4.8 Å 
(Supplementary Table 1). For each map, a single subunit was 
first segmented from the entire density map. Fragments from 
proteins with similar topology or sequence were excluded while 
constructing the fragment libraries. In seven of the nine cases, 
partial models from the final iteration of the de novo building 
step were within 1.1- to 2.3-Å Cα RMSD from the experimen-
tal structures (Fig. 2 and Supplementary Table 1), six of which 
were more than 70% complete. These partial models were then 
completed and refined using RosettaCM, yielding models with 
1.3- to 2.2-Å Cα RMSD (2.0- to 3.1-Å all-atom RMSD) from the 
experimentally determined structures. In some cases, when com-
pleting partial models, RosettaCM was able to fix errors result-
ing from the initial fragment placement (Supplementary Fig. 1). 
In contrast, Buccaneer9—a widely used model-building method 
from X-ray crystallography—although able to trace portions of 
the backbone for all targets, correctly identified more than 5% of 
the sequence in only three cases and never identified more than 
50% (Supplementary Table 2).

Among the proteins in the benchmark set, TRPV1 (ref. 2) and 
FrhB7 were proteins with new folds solved recently by manually 
building models into cryo-EM density. Our method automati-
cally obtained completed models with 1.4-Å Cα RMSD model 
for TRPV1 and 1.7-Å Cα RMSD for FrhB. To test the resolution 
limit at which de novo structure determination is possible, we 
used a previously unpublished 4.8-Å-resolution map from the 
20S proteasome α-subunit (20S-α). At this resolution, the α-helix 
pitch is somewhat visible; however, β-strand separation is only 
barely resolved (Fig. 1b). With our approach, the final partial 
model had 196 of 221 residues placed, with just 1.3-Å RMSD to 
the crystal structure (Figs. 1 and 2, and Supplementary Table 1).  
Using RosettaCM to build a completed model, we obtained a  
1.2-Å Cα RMSD model (2.0-Å all-atom RMSD). Despite the lack 
of side-chain density details, side-chains in the core of the protein 
showed very good agreement with the crystal structure (Fig. 2).

As described above, we iterated fragment matching and 
assembly steps to improve coverage of the sequence assignment.  

This is because near-native placements of some fragments did not 
score well enough to be carried over to MC-SA assembly, even 
though they adopted near-native conformations (Supplementary 
Table 3).  In each iteration, models are assembled from the con-
sensus assignment of the lowest-scoring 5% of trajectories; these 
regions are locked, the corresponding density is masked out, and 
another round of fragment search and MC-SA is carried out.  
In all cases except one (TMV), more than one iteration was 
required to obtain a partial model with at least 70% of the 
sequence placed (Supplementary Table 1). For example, 20S-α 
took three rounds to reach this level of coverage; the partial model 
after one round had only 34% of the sequence placed (Fig. 1b 
and Supplementary Table 1). Sequence positions at S3, S6 and 
S7 were correctly traced only in the second round, and S1, S2, S5, 
S9 and S10 only in the third (Fig. 1b).

There were three cases (BPP1, STIV and VP6) in which 
our approach was unable to automatically determine accu-
rate full-length structures. This was clearly identifiable by the 
poor coverage of the models after a single round of modeling 
(Supplementary Table 1). There are two main reasons for such 
failures. If a large portion of the protein does not have frag-
ments that adopt near-native conformations, it is not possible to 
 accurately assign positions for these residues into the map. BPP1 
is one such case: almost half the sequence has no accurate frag-
ments (Supplementary Table 2). Second, β-sheet assembly from 
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figure � | High-accuracy model building in near-atomic-resolution  
cryo-EM maps. Far left, density maps used for de novo model building on 
20S-α, TRPV1, FrhB and FrhA. Left, partial model at the final iteration. 
Right and far right, full-length RosettaCM models (red) superimposed with 
the experimentally determined structures (blue). Shown is the lowest-
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figure 3 | Blind structure determination of the VipA/VipB complex 
from V. cholerae. (a,b) An error in the manually traced model (pink, a) 
is corrected by our method (green, b). The arrows in black show the 
positions of two residues in both models (F95 and F101), highlighting 
the six-residue registration shift between the models. Orange and blue 
arrows indicate the beginning and end of the region with the sequence 
registration discrepancy. (c) Partial trace generated by our method 
in a region where manual tracing was impossible. (d) The full-length 
RosettaCM model at the same region shows good agreement with the map.
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fragments is difficult owing to the conformational variability of 
sheets compared to helices. STIV and VP6 are such cases in which 
we failed to accurately build sheets (Supplementary Fig. 2). These 
failures suggest possibilities for future method improvement.

We applied our method on a newly reconstructed cryo-EM map 
of the contractile sheath proteins of the type VI secretion system 
from V. cholerae (EMD-2699) at 3.5-Å resolution, with no detect-
able homologs of known structure. The asymmetric unit contained 
a heterodimer (VipA/VipB) with 660 residues total. After manually 
segmenting the map, eight iterations of our protocol generated a 
partial model with 466 residues placed. In parallel, the map was 
manually traced with the aid of Buccaneer, which placed a total of 
513 residues. There was good overall agreement between the two 
models: over 394 residues, the Cα RMSD was 1.1 Å. However, 
there were 35 residues for which sequence registration was shifted 
by six positions between the models (Fig. 3a,b). The segment was 
flanked by disordered residues; this combined with the poor local 
resolution made sequence assignment particularly difficult. The 
sequence assignment made by our method showed better agree-
ment with the density map than the hand-traced model in this 
region (Supplementary Fig. 3). We used RosettaCM to assemble 
full-length structures starting from both configurations. Among 
the low-energy models RosettaCM generated, the segment assigned 
by the automated method was exclusively chosen, suggesting our 
assignment was more energetically favorable and hence correct. 
Additionally, our approach was able to assign sequence in regions 
where the manual model did not (Fig. 3c). Combining our model 
with the manual model in RosettaCM, we were able to build a 
full-length model for the heterodimer complex (Fig. 3d and ref. 
15). The blind case shows that our approach is tolerant to errors in 
segmentation; although our manual segmentation was imperfect, 
structure determination was still successful.

The key concept we use here, that local amino acid sequences 
have preferences for certain backbone conformations, has pre-
viously been used to predict structures of small proteins (<100  
residues)16 de novo and larger proteins using sparse backbone-
only NMR data17. However, no previous approach in protein 
structure modeling has used this concept in conjunction with 
experimentally determined local Cartesian-space restraints to 
restrict conformational space. The method described here should 
provide a general framework for the use of these types of sparse 
experimental constraints in protein structure determination.

Several improvements will increase both the applicability and 
accuracy of our de novo approach. Our tests assumed a map in 
which the asymmetric unit was segmented. Although manual 
segmentation is often straightforward (as in the blind case), it 
may prove difficult in highly intertwined structures. Further 
improvements of the method on all-β proteins are also neces-
sary: strand-pairing bonuses in the scoring function combined 
with more aggressive fragment optimization into density should 
improve accuracy with all-β proteins. Our approach is amenable 
to integrating additional structural information: known struc-
tures of components are easily incorporated, experimentally 
derived pairwise distance restraints may guide conformational 

sampling, and Cα traces can be provided by users. Our method 
should streamline the protein structure determination process 
from cryo-EM maps at near-atomic resolution, reducing human 
effort and errors due to human biases. The de novo protein struc-
ture determination method described here is freely available for 
academic use through the Rosetta software suite, available at 
https://www.rosettacommons.org/.

methods
Methods and any associated references are available in the online 
version of the paper.

Accession codes. EMDataBank: 20S proteasome density map at 
4.8 Å, EMD-6219.

Note: Any Supplementary Information and Source Data files are available in the 
online version of the paper.
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online methods
Map preparation. For all benchmark targets, the cryo-EM maps 
were segmented into single-subunit guided by native structures 
using UCSF Chimera’s “zone” tool at a distance of 4 Å. The cryo-
EM maps and the corresponding deposited native structures used 
are listed in Supplementary Table 1.

Matching fragments into density. For each nine-residue window 
of amino acid sequence, we used the standard Rosetta fragment 
picker13 to collect libraries of representative backbone conforma-
tions from proteins of known structure on the basis of similar 
sequence and predicted secondary structure. Fragments from pro-
teins of known structure homology (PSI-BLAST E-value <0.05) 
to the benchmark proteins were excluded while constructing the 
fragment libraries. A sequence-derived fragment library given a 
protein sequence was curated with 25 backbone conformations 
per sequence position.

We used backbone information given a fragment to first identify 
the likely locations and orientations in the density map using six-
dimensional (6D) translation-rotation search. The density map was 
subdivided into a regular 3D grid, and the search fragment was 
translated to each grid point in turn. At each grid point, the spheri-
cal harmonic decomposition of model and map density was used to 
rapidly search all rotations of a backbone fragment against regions 
of experimental density18. To further speed up matching, we carried 
out this rotation search only at regions of high density (mean density 
Z score >1 in a sphere around each grid point). For each fragment, 
the top 2,000 placements were collected using the approximated 
correlation score between backbone configurations and density19, 
giving 50,000 candidate placements per sequence position.

Side-chain information was then used to further refine the 
placements and identify the most likely placements where both 
backbone and physically realistic side-chain conformations have 
good agreement to the local density. At each sequence position, 
the 50,000 backbone placements were then further refined with 
rotamer optimization and rigid-body minimization using Rosetta. 
After this optimization, 2,500 placements for each sequence posi-
tion were selected for each sequence position using the Rosetta 
full-atom density correlation score19. These fragments were clus-
tered (with 2-Å RMSD cluster radius), and the member with the 
lowest density score was taken from each cluster. Finally, if there 
were more than 50 clusters, only 50 fragments were carried over 
to model assembly.

Evaluating compatible set of fragments. From these fragment place-
ments, we next want to select a mutually compatible set. We assessed 
this compatibility using a scoring function with four terms: 
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The term scoreoverlap gives a bonus to pairs of fragments that place 
the same residue nearby, with a larger bonus for more overlapping 
residues; scoreclose penalizes pairs of fragments that put residues 
close in the sequence further apart than maxdist, the maximum 
observed distance of residues at a particular sequence separa-
tion; finally, scoreclash penalizes fragment pairs with two residues 
occupying the same place.

Simulated annealing with Monte Carlo sampling. Monte Carlo 
simulated annealing (MC-SA) sampling was used to search  
for a set of fragments that are mutually compatible. Each sequence 
position is initially assigned one random (out of 50 possible)  
fragment placements or a ‘null placement’ that handles the  
possibility that there may be no good fragment placements at a 
particular sequence position. Each step in the trajectory replaces 
the fragment at a particular position subject to the Metropolis 
criterion using the scoretotal. For pairwise score terms, precom-
puting all pairwise scores allows for fast score evaluation of a 
fragment assignment. To control precision versus coverage,  
we assign a density score, densnull, to the null placement; lower 
values lead to reduced coverage but more precision in fragment 
placement. All experiments in the paper used densnull = −150.  
Finally, simulated annealing was carried out by slowly reduc-
ing the temperature from 500 to 1 in 200 increments with  
5,000 moves each. Total run time was approximately 10 min  
per trajectory.

Iterative assembly of models. In many cases, there are a few 
similar fragment assignments with roughly equivalent scores.  
To identify all of these alternate models, we run 2,000 MC-SA  
trajectories. We use this ensemble to find a high-confidence par-
tial model to carry into the next round. From the lowest scoring 
5% of trajectories, we assemble a backbone model by identifying 
all residues that are placed in the same position (with 3-Å RMSD 
tolerance) and taking the average backbone coordinate at each 
residue position. If less than 70% of backbone residues have been 
assigned, we iterate fragment matching and MC-SA assembly.  
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The subsequent iteration of fragment matching was carried out by 
first masking out density that has been assigned in the backbone 
model from the previous iteration and then placing fragments 
only from sequence not yet assigned into density.

Completing models with RosettaCM. The final step in our 
approach is to rebuild the final set of unassigned residue positions 
in the partial models using RosettaCM14, a comparative modeling 
method. Unassigned sequence positions in each partial model are 
rebuilt in the same manner as unaligned regions in comparative 
modeling. RosettaCM is guided by the cryo-EM density maps in 
completing partial models by adding a score term assessing agree-
ment of a model to experimental density during model building 
and refinement with Rosetta’s physically realistic all-atom energy 
function. For each partial model, 1,000 full-length models are 
generated. The best 20% by Rosetta energy are selected, and of 
those, the ten models with best fit to the density are selected.

In four of the cases from our test set, this led to models that 
had RMSDs similar to or slightly higher than the partial model 
from the final iteration, which is expected because the unbuilt 
parts are mostly loops or regions with less-resolved density. 
However, in two cases—FrhA and 20S-α—we saw an improve-
ment in overall RMSD. For FrhA, this improvement was par-
ticularly striking: the Cα RMSD decreased from 2.3 Å to 1.3 Å. 
Supplementary Figure 1 illustrates some improvements in the 
structure: RosettaCM corrected several loop residues incorrectly 
placed into density from the previous MC-SA assembly step. As 
indicated in Supplementary Table 1, this rebuilding is consist-
ent and robust, with minimal structural deviation over the ten 
lowest-scoring models.

Model building with Buccaneer. Model building with Buccaneer9 
used the same segmented maps and was provided the same 
sequences as was our approach. Reflection data were computed 
from the cryo-EM maps using phenix.map_to_structure_fac-
tors20. SIGF was set to F/10 for all reflections using SFTOOLS 
from the CCP4 Program Suite v6.4.0 (ref. 21). A map padding of 
5 Å was added to the border to ensure no effects from periodicity 
on model building. We ran Buccaneer from the CCP4 Program 
Suite v6.4.0 with mostly default setting: five cycles of building/
refinement were carried out using the correlation target function 
during model building, with “use R-free” disabled.

20S map reconstruction. Thermoplasma acidophilum 20S protea-
some was expressed and purified from Escherichia coli according 
to the established protocols22. A drop of 2 µL of purified 20S 
proteasome at a concentration of ~0.9 µM sample was applied to 
glow-discharged Quantifoil holey carbon grids (Quantifoil, Micro 

Tools GmbH) and plunge frozen using a Vitrobot Mark III (FEI). 
Grids of frozen hydrated samples were imaged using a FEI TF30 
Polara electron microscope (FEI) equipped with a field mission 
electron source and operated at an accelerating voltage of 300 kV. 
Images were recorded at a nominal magnification 20,000× using a 
Gatan K2 Summit camera operated in super-resolution counting 
mode with a calibrated physical pixel size of 1.96 Å at 20,000×.  
A 10-s exposure time at a dose rate of ~10 counts/pixel/s leads to a 
total dose ~30 e−/Å2. The defocus was in the range of ~0.8–1.9 µm.  
The CTFFIND3 (ref. 23) was used to determine the defocus 
values. Half of the images with substantial drift and bad Thon 
rings were discarded. Side-view particles of 20S proteasome were 
picked automatically using FindEM24. All picked particles were 
first subject to a standard procedure of multiple rounds of mul-
tireference alignment and classification25. Particles within bad 
2D classes were removed. All remaining particles were subject to 
further manual inspection, and more bad particles were removed. 
The final data set contained 79,801 particles from 157 images of 
20,000× magnification.

GeFREALIGN26 was used to refine and determine the 3D 
reconstructions with a D7 symmetry following a frequency- 
limited refinement procedure27,28. Note that no motion  
correction was carried out for this data set. The atomic structure 
of archaeal 20S proteasome (PDB code: 3C92) filtered to 15 Å was 
used as initial model. The final 3D reconstruction has a resolu-
tion of ~4.8 Å using Fourier shell correlation 0.143 criteria29. 
This resolution is beyond 80% of camera’s physical Nyquist limit. 
Structure features in the amplitude-sharpened map confirm this 
claimed resolution.

Method availability. The de novo protein structure determina-
tion method described here is freely available for academic use 
through the Rosetta software suite (weekly releases on or after  
15 February 2015), available at https://www.rosettacommons.org/.
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