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Computational design of ligand-binding proteins
with high affinity and selectivity
Christine E. Tinberg1*, Sagar D. Khare1{*, Jiayi Dou2,3, Lindsey Doyle4, Jorgen W. Nelson5, Alberto Schena6, Wojciech Jankowski7,
Charalampos G. Kalodimos7, Kai Johnsson6, Barry L. Stoddard4 & David Baker1,8

The ability to design proteins with high affinity and selectivity for
any given small molecule is a rigorous test of our understanding of
the physiochemical principles that govern molecular recognition.
Attempts to rationally design ligand-binding proteins have met with
little success, however, and the computational design of protein–
small-molecule interfaces remains an unsolved problem1. Current
approaches for designing ligand-binding proteins for medical2 and
biotechnological uses rely on raising antibodies against a target
antigen in immunized animals3,4 and/or performing laboratory-
directed evolution of proteins with an existing low affinity for the
desired ligand5–7, neither of which allows complete control over the
interactions involved in binding. Here we describe a general com-
putational method for designing pre-organized and shape comple-
mentary small-molecule-binding sites, and use it to generate protein
binders to the steroid digoxigenin (DIG). Of seventeen experimentally
characterized designs, two bind DIG; the model of the higher affinity
binder has the most energetically favourable and pre-organized inter-
face in the design set. A comprehensive binding-fitness landscape of
this design, generated by library selections and deep sequencing, was
used to optimize its binding affinity to a picomolar level, and X-ray
co-crystal structures of two variants show atomic-level agreement with
the corresponding computational models. The optimized binder is
selective for DIG over the related steroids digitoxigenin, progesterone
and b-oestradiol, and this steroid binding preference can be repro-
grammed by manipulation of explicitly designed hydrogen-bonding
interactions. The computational design method presented here should
enable the development of a new generation of biosensors, therapeutics
and diagnostics.

Computational design could provide a general approach for creating
new small molecule binding proteins with rationally programmed
specificities. Structural and biophysical characterization of previous
computationally designed ligand-binding proteins revealed numerous
discrepancies with the design models, however, and it was concluded
that protein–ligand interaction design is an unsolved problem1,8. The
lack of accuracy in programming protein–small-molecule interactions
also contributes to low catalytic efficiencies of computationally designed
enzymes9–14. The development of robust computational methods for the
design of small-molecule-binding proteins with high affinity and select-
ivity would have wide-ranging applications.

We developed a computational method for designing ligand-binding
proteins with three properties characteristic of naturally occurring
binding sites: (1) specific energetically favourable hydrogen-bonding
and van der Waals interactions with the ligand; (2) high overall shape
complementarity to the ligand; and (3) structural pre-organization in
the unbound protein state, which minimizes entropy loss upon ligand
binding15,16. To program in defined interactions with the small molecule,

disembodied binding sites are created by positioning amino acid side
chains around the ligand in optimal orientations and then placed at
geometrically compatible sites in a set of scaffold protein structures17.
The surrounding side chain identities and conformations are then opti-
mized to generate additional protein–ligand and buttressing protein–
protein interactions (Fig. 1a). Designs with protein–small-molecule
shape complementarity below those typical of native complexes18 or
having interface side chain conformations with low Boltzmann-weighted
probabilities in the unbound state16 are then discarded.

We used the method to design proteins that bind the steroid DIG
(Supplementary Fig. 1), the aglycone of digoxin, a cardiac glycoside used
to treat heart disease19 and a non-radioactive biomolecular labelling
reagent20. Anti-digoxigenin antibodies are administered to treat overdoses
of digoxin, which has a narrow therapeutic window21, and are used to
detect biomolecules in applications such as fluorescence in situ hybridiza-
tion20. We created idealized DIG-binding sites featuring hydrogen
bonds from Tyr or His to the polar groups of DIG and hydrophobic
packing interactions between Tyr, Phe or Trp and the steroid ring
system (Fig. 1a). These interactions were embedded in designed binding
sites with high shape complementarity to DIG, and 17 designs were
selected for experimental characterization based on computed binding
affinity, shape complementarity, and the extent of binding site pre-
organization in the unbound state (Fig. 1b and Supplementary Tables
1 and 2).

Binding of the designed proteins to DIG was probed by yeast
surface display22 and flow cytometry using DIG-functionalized bovine
serum albumin (DIG-BSA) or RNase (DIG-RNase). Designed proteins
DIG5 and DIG10 bound to both labels (Fig. 1c and Supplementary
Fig. 2), and binding was reduced to background levels when unlabelled
DIG was added as a competitor (Fig. 1c and Supplementary Fig. 3).
Fluorescence polarization measurements with purified proteins and
Alexa488-fluorophore-conjugated DIG (DIG-PEG3-Alexa488) indi-
cated affinities in the low-to-mid micromolar range, with DIG10 bind-
ing more tightly (Fig. 2a, b). Isothermal titration calorimetry (ITC)
measurements confirmed that the affinity of DIG10 for DIG is identical
to that for DIG-PEG3-Alexa488 (Fig. 2b, Supplementary Fig. 4 and
Supplementary Table 3). The scaffold from which both DIG5 and
DIG10 derive, a protein of unknown function from Pseudomonas
aeruginosa (Protein Data Bank (PDB) accession code 1Z1S), does not
bind to either label (Fig. 1c and Supplementary Fig. 3a) when expressed
on the yeast surface or to DIG-PEG3-Alexa488 in solution (Fig. 2a),
suggesting that the binding activities of both proteins are mediated
by the computationally designed interfaces. Indeed, substitution of
small nonpolar residues in the binding pockets of DIG5 and DIG10
with arginines resulted in complete loss of binding, and mutation of
the designed hydrogen-bonding tyrosine and histidine residues to

*These authors contributed equally to this work.

1Department of Biochemistry, University of Washington, Seattle, Washington 98195, USA. 2Department of Bioengineering, University of Washington, Seattle, Washington 98195, USA. 3Graduate Program
in Biological Physics, Structure, and Design, University of Washington, Seattle, Washington 98195, USA. 4Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington 98109,
USA. 5Department of Genome Sciences, University of Washington, Seattle, Washington 98195, USA. 6Ecole Polytechnique Fédérale de Lausanne, Institute of Chemical Sciences and Engineering, Institute of
Bioengineering, National Centre of Competence in Research (NCCR) in Chemical Biology, 1015 Lausanne, Switzerland. 7Department of Chemistry and Chemical Biology, Center for Integrative Proteomics
Research, Rutgers University, Piscataway, New Jersey 08854, USA. 8Howard Hughes Medical Institute, University of Washington, Seattle, Washington 98195, USA. {Present address: Department of
Chemistry and Chemical Biology, Center for Integrative Proteomics Research, Rutgers University, Piscataway, New Jersey 08854, USA.

2 1 2 | N A T U R E | V O L 5 0 1 | 1 2 S E P T E M B E R 2 0 1 3

Macmillan Publishers Limited. All rights reserved©2013

www.nature.com/doifinder/10.1038/nature12443


phenylalanine reduced (DIG5) or abolished (DIG10) binding (Fig. 1d
and Supplementary Fig. 5). Optimization of DIG10 by site-saturation
mutagenesis and selections using yeast surface display and fluorescence-
activated cell sorting (FACS) identified several small-to-large hydro-
phobic amino acid changes that increase binding affinity 75-fold through
enhanced binding enthalpy, yielding DIG10.1 (Fig. 2b, c, f, Supplemen-
tary Figs 4, 628 and Supplementary Table 3).

To provide feedback for improving the overall design methodology
and to evaluate the contribution of each residue in the DIG10.1-binding
site, we used next-generation sequencing to generate a comprehensive
binding fitness map23–25. A library of variants with approximately 1–3
substitutions at 39 designed interface positions in DIG10.1 was gener-
ated using doped oligonucleotide mutagenesis, displayed on yeast, and
subjected to selections using a monovalent DIG-PEG3-biotin conjugate
(Supplementary Fig. 9). Variants with increased affinity for DIG were
selected by FACS, and next-generation sequencing was used to quantify
the frequency of every single point mutation in the unselected and
selected populations. A large majority of the interrogated variants were
depleted in the selected population relative to the unselected input library,
suggesting that most of the DIG10.1-binding site residues are optimal for
binding (Fig. 2d, e and Supplementary Fig. 10). In particular, mutation of
the three designed hydrogen-bonding residues, Tyr 34, Tyr 101 and
Tyr 115, to any other amino acid was disfavoured. Several large hydro-
phobic residues that pack against the ligand in the computational model

are also functionally optimal (for example, Phe 66 and Phe 119).
Besides Ala 99, which contacts DIG directly, most of the observed
mutations that improve binding are located in the second coordination
shell of the ligand and fall into two categories: (1) protein core sub-
stitutions tolerating mutation to chemically similar amino acids (for
example, Leu 105 and Cys 23), and (2) solvent-exposed loop residues
having high sequence entropy (for example, His 90 and Val 92). The
best clone obtained from sorting the library to homogeneity, DIG10.2,
contains two of the most highly enriched mutations, Ala37Pro and
His41Tyr (Fig. 2b, c and Supplementary Figs 4, 6, 8 and 11).

To increase binding affinity further, we constructed a library in
which the residues at 11 positions that acquired beneficial substitu-
tions in the deep sequencing experiment were varied in combination to
allow for non-additive effects. Selections led to DIG10.3 (Supplemen-
tary Figs 4, 6, 8 and 12), which binds DIG and its cardiac glycoside
derivative digoxin with picomolar affinity (Fig. 2b, Supplementary
Fig. 13 and Supplementary Table 4), rivalling the affinities of anti-
digoxin antibody therapeutics21 and an evolved single-chain variable
anti-digoxin antibody fragment7. Fluorescence-polarization-based affi-
nity measurements of DIG10.3 and Tyr knockouts suggest that the
designed hydrogen bonds each contribute ,2 kcal mol21 to binding
energy (Supplementary Table 5 and Supplementary Fig. 8).

The crystal structures of DIG10.2 and DIG10.3 in complex with DIG
were solved to 2.05 Å and 3.2 Å resolution, respectively (Fig. 3a, b and
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Figure 1 | Computational design methodology and experimental binding
validation. a, Overview of the design procedure. b, Ranking of experimentally
characterized DIG designs by computed ligand interaction energy (Rosetta
energy units, REU) and average (geometric mean) side-chain Boltzmann
weight of residues designed to hydrogen bond to DIG. DIG10 (red) scores the
best by both metrics. c, Flow cytometric analysis of yeast cells expressing
designed proteins. Yeast surface expression and DIG binding were probed by

labelling with anti-c-Myc-fluorescein (FITC) and a mixture of biotinylated
DIG-functionalized BSA and phycoerythrin (PE)–streptavidin, respectively.
ZZ(2), negative control; ZZ(1), positive control; 1Z1S, original scaffold.
d, On-yeast substitutions of DIG10-designed interface residues reduce binding
(phycoerythrin) signals to background negative control levels. See figure
legends in Supplementary Information for details.
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Supplementary Figs 14219). The structure of DIG10.2 bound to DIG
shows atomic-level agreement with the design model (all-atom root
mean squared deviation (r.m.s.d.) 5 0.54 Å; Fig. 3c). The ligand–protein
interface has high shape complementarity (Sc 5 0.66) and no water
molecules are observed in the binding pocket. The DIG binding mode
is nearly identical in the X-ray structure and the computational model,
with an average r.m.s.d. of 0.99 Å for all ligand heavy atoms (Fig. 3d).
As designed, Tyr 34, Tyr 101 and Tyr 115 hydrogen bond with O3, O2
and O1 of DIG, respectively. Tyr 41, a residue identified during affinity
maturation, forms a weak hydrogen bond with the terminal hydroxyl
group of DIG (O5) (Supplementary Fig. 16). Of 27 non-glycine/alanine
residues within ,10 Å of the ligand, 21 adopt the computationally
designed conformations (Supplementary Fig. 17), including Tyr 101
and Tyr 115 (in chain B) as well as the first-shell packing residues
Trp 22, Phe 58 and Phe 119. The structure of DIG10.3 bound to DIG
(Supplementary Fig. 18) also agrees closely with the design model
(r.m.s.d. 5 0.68 Å).

We assessed the binding specificity of DIG10.3 by determining affi-
nities for a series of related steroids by equilibrium competition fluor-
escence polarization. Digitoxigenin, progesterone and b-oestradiol bind
less tightly to DIG10.3 than DIG (Fig. 4a, b and Supplementary Table 4).
The magnitudes of the affinity decreases are consistent with the loss of one,
two and three hydrogen bonds, respectively (assuming ,1.8 kcal mol-1

per hydrogen bond26), suggesting that these compounds bind in the same
orientation as DIG. We next investigated whether the observed steroid
selectivity could be reprogrammed by mutagenesis of the key hydrogen-
bonding tyrosines. The variants Tyr101Phe, Tyr34Phe and Tyr34Phe/
Tyr99Phe/Tyr101Phe show clear preferences for more hydrophobic

steroids in a predictable manner that depends on the hydrogen-bonding
capabilities of both the protein and the steroid. Tyr101Phe eliminates the
DIG-specific hydrogen bond with DIG O2 and provides a more hydro-
phobic environment that favours the other three steroids (Fig. 4c).
Tyr34Phe removes a hydrogen bond common to DIG and digitoxigenin,
thus enhancing the preference for progesterone (Fig. 4d). Tyr34Phe/
Tyr99Phe/Tyr101Phe has decreased affinity for DIG and increased affi-
nity for the more hydrophobic steroids (Fig. 4e). These results confirm
that the selectivity of DIG10.3 for DIG is conferred through the designed
hydrogen-bonding interactions and demonstrate how this feature can be
programmed using positive design alone through the explicit placement
of designed polar and hydrophobic interactions.

Comparison of the properties of successful and unsuccessful designs
provides a test of the hypotheses underlying the design methodology.
Although all 17 designed proteins had high computed shape comple-
mentarity to DIG by construction, the DIG10 design, which had the
highest affinity for DIG, had the most favourable computed protein–
ligand interaction energy and was predicted to have the most pre-
organized binding site (Fig. 1b and Supplementary Table 6), suggesting
that these attributes should continue to be the focus of future design
methodology development. One potential avenue for obtaining more
favourable interaction energies would be incorporating backbone flex-
ibility during design to achieve more tightly packed binding sites: the
fact that substitution of small hydrophobic interface residues to larger
ones increased binding affinity indicates that the original DIG10
design was under-packed.

The binding fitness landscape in combination with the X-ray co-
crystal structures highlight the importance of second shell interactions

Variant Kd for DIG-PEG3-

Alexa488 (FP)

Kd for DIG (ITC)

DIG10 8.9 ± 1.3 μM 12.2 ± 3.1 μM

DIG5 205 ± 28 μM ND

1Z1S mM (nonspecific) ND

DIG10.1 119 ± 15 nM 196 ± 25 nM

DIG10.2 8.9 ± 2.3 nM 168 ± 59 nM

DIG10.3 541 ± 193 pM < 6 nM
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Figure 2 | Binding characterization and affinity maturation. a, Equilibrium
fluorescence anisotropy of DIG-PEG3-Alexa488 mixed with purified DIG10
(blue), DIG5 (cyan), 1Z1S scaffold (black) and BSA (red). Error bars represent
s.d. for at least three independent measurements. b, Dissociation constants
(Kd values) of designs. Differences in fluorescence polarization (FP)- and
isothermal titration calorimetry (ITC)-derived Kd values probably result from
enhanced interactions with the linker of DIG-PEG3-Alexa488 used in the
fluorescence polarization experiments. ND, not determined. c, Mutations
identified during affinity maturation to generate DIG10.1 (blue), DIG10.2
(orange) and DIG10.3 (green) mapped onto the computational model of

DIG10.3. d, Fitness landscape of DIG10.1 showing the effects of single amino
acid substitutions on binding (DEx

i ; see equation (1) in Methods). Red and
blue indicate enrichment and depletion, respectively. The original DIG10.1
amino acid at each position is indicated in bold. White indicates mutations for
which there were not enough sequences in the unselected library to make a
statistically significant conclusion about function. e, The optimality of each
initial DIG10.1 residue type mapped onto the computational model of
DIG10.1. f, DIG binding thermodynamic parameters determined by ITC.
DG, free binding energy; DH, binding enthalpy; 2TDS, binding entropy.
See figure legends in Supplementary Information for details.
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in stabilizing binding competent conformations. For example, the
enriched substitution Leu105Trp (Fig. 2d) causes the adjacent Tyr 115
side chain, which shows conformational variability in DIG10.2, to adopt
a single conformation in DIG10.3 that makes a more canonical hydro-
gen bond to DIG than that of the DIG10.2 alternative state (Fig. 3e and
Supplementary Fig. 19). The calculated side chain pre-organization of all
three hydrogen-bonding tyrosine residues increases from DIG10.2 to
DIG10.3 (Supplementary Table 7), suggesting that the increased affinity
may arise in part from a higher proportion of the binding competent
conformation of apo-DIG10.3 (refs 15, 27). Indeed, ITC studies con-
firm that entropic as well as enthalpic factors contribute to the enhanced
binding affinity of DIG10.3 (Fig. 2f and Supplementary Table 3). Similarly,
reduced backbone conformational entropy is probably responsible for
the increased fitness of substitutions increasing b-sheet propensity at
inter-strand loop positions 90 and 92 (Fig. 2d). That flexibility is selected
against during affinity maturation suggests that maximizing the free-
energy gap between binding-competent and alternative states of the bind-
ing site28 by explicitly designing second shell interactions to buttress side

chains making key ligand contacts should help to achieve high affinity in
the next generation of computationally designed ligand-binding proteins.

The binding affinity of DIG10.3 is similar to those of anti-digoxin
antibodies21, and because it is stable for extended periods (.3 months)
at ambient temperatures (Supplementary Fig. 20) and can be expressed
at high levels in bacteria, it could provide a more cost-effective alterna-
tive for biotechnological and for therapeutic purposes if it can be made
compatible with the human immune response. With continued
improvement in the methodology and feedback from experimental
results, computational protein design should provide an increasingly
powerful approach to creating small molecule receptors for synthetic
biology, therapeutic scavengers for toxic compounds, and robust bind-
ing domains for diagnostic devices.

METHODS SUMMARY
Design calculations were performed using RosettaMatch17 to incorporate five pre-
defined interactions to DIG into a set of 401 scaffolds. RosettaDesign29 was then
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used to optimize each binding site sequence for maximal ligand-binding affinity.
Designs having low interface energy, high shape complementarity, and high bind-
ing site pre-organization were selected for experimental characterization. Example
command lines and full design protocols are given in the Supplementary Data.

Designs were displayed on the surface of yeast strain EBY100 and examined for
binding to a mixture of 2.7mM biotinylated DIG-conjugated BSA or DIG-conjugated
RNase and streptavidin–phycoerythrin on an Accuri C6 flow cytometer. Binding
clones from yeast-surface displayed libraries based on DIG10 were selected using
highly avid DIG-BSA or DIG-RNase or monovalent DIG-conjugated biotin on a
Cytopeia inFlux cell sorter. DIG10.1-derived library DNA was sequenced in paired-
end mode on an Illumina MiSeq. For single mutations having $7 counts in the
original input library, a relative enrichment ratio between the input library and each
selected library was calculated23–25. The effect of each amino acid substitution on
binding, DEx

i , was computed with equation (1),

DEx
i ~log2

f x,sel
i

f x,unsel
i

 !
{log2

f orig,sel
i

f orig,unsel
i

 !
ð1Þ

in which f x,sel
i is the frequency of mutation x at position i in the selected population,

f x,unsel
i is the frequency in the unselected population, f orig,sel

i is the frequency of the

original amino acid at position i in the selected population, and f orig,unsel
i is the

frequency of the original amino acid in the unselected population.
For biochemical assays, proteins were expressed in E. coli Rosetta 2 (DE3) cells

with a carboxy-terminal tobacco etch virus (TEV) protease-cleavable His6 tag. For
crystallographic analysis of DIG10 variants, a 12-amino-acid structurally disor-
dered C terminus deriving from the scaffold protein 1Z1S was replaced directly
with a His6 tag. Binding affinities were determined by equilibrium fluorescence
polarization30 on a SpectraMax M5e microplate reader by monitoring the anisotropy
of DIG-conjugated Alexa488 as a function of protein concentration. Equilibrium
fluorescence polarization competition assays were performed by examining the
effect of increasing concentrations of unlabelled DIG, digitoxigenin, progesterone
and b-oestradiol on the anisotropy of designed protein2DIG-conjugated Alexa488
complex. ITC studies were performed on an iTC200 microcalorimeter.

Full Methods and any associated references are available in the online version of
the paper.
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METHODS
General methods. Full details for all computational and experimental methods
are given in Supplementary Methods. Design calculations were performed using
RosettaDesign29. Dissociation constants (Kd values) of designs were determined by
equilibrium fluorescence polarization30 and by ITC. Example command lines and
RosettaScripts31 design protocols are provided in Supplementary Data. Source
code is freely available to academic users through the Rosetta Commons agree-
ment (http://www.rosettacommons.org/). Design models, the scaffold library, and
scripts for running design calculations are provided on the Baker laboratory
website.
Matching. RosettaMatch17 was used to identify backbone constellations in 401
protein scaffold structures where a DIG molecule and side chain conformations
interacting with DIG in a pre-defined geometry could be accommodated. This set
contained scaffolds previously used for design projects within our laboratory10,13,32,
as well as structural homologues of a subset of these scaffolds that are known to
tolerate mutations. Full details are given in Supplementary Methods.
Rosetta sequence design. Two successive rounds of sequence design were used.
The purpose of the first was to maximize binding affinity for the ligand33. The goal
of the second was to minimize protein destabilization due to aggressive scaffold
mutagenesis while maintaining the binding interface designed during the first
round. During the latter round, ligand–protein interactions were up-weighted
by a factor of 1.5 relative to intra-protein interactions to ensure that binding energy
was preserved. Two different criteria were used to minimize protein destabiliza-
tion: (1) native scaffold residues identities were favoured by 1.5 REU, and (2) no
more than five residues were allowed to change from residue types observed in a
multiple sequence alignment (MSA) of the scaffold if (a) these residues were
present in the MSA with a frequency greater than 0.6, or (b) if the calculated
DDG for mutation of the scaffold residue to alanine34 was greater than 1.5 REU
in the context of the scaffold sequence. In some design calculations, identities of
the matched hydrogen-bonding residues were allowed to vary according to the
MSA and DDG criteria described above. In these cases, designs having fewer than
three hydrogen bonds between the protein and the ligand were discarded.
Design evaluation. Designs were evaluated on interface energy, ligand solvent
exposed surface area, ligand orientation, shape complementarity, and apo-protein
binding site pre-organization. The latter was enforced by explicitly introducing
second-shell amino acids that bolster the programmed interacting residues using
Foldit35 and by selecting designs having rotamer Boltzmann probabilities16 . 0.1
for at least one hydrogen-bonding residue (Supplementary Table 6). High shape
complementarity was enforced by rejecting designs having Sc , 0.5. Shape com-
plimentary was computed using the CCP4 package v.6.0.2 (ref. 36) using the Sc

program18 and the Rosetta radii library. All designs were evaluated for local
sequence secondary structure compatibility, and those predicted to have backbone
conformations that varied by .0.8 Å from their native scaffold were rejected (see
Supplementary Methods).
General experimental methods. Detailed procedures for the syntheses of DIG-
BSA-biotin, DIG-RNase-biotin, DIG-PEG3-biotin, and DIG-PEG3-Alexa488, as
well as protein expression, purification, crystallization, cloning and mutagenesis
methods are given in Supplementary Methods. Details about fluorescence polar-
ization binding assays, ITC, gel filtration analysis, analytical ultracentrifugation
experiments, and circular dichroism protein stability measurements are also pro-
vided in Supplementary Methods.
Yeast surface display. Designed proteins were tested for binding using yeast-
surface display22. Yeast surface protein expression was monitored by binding of
anti-c-Myc-FITC to the C-terminal Myc epitope tag of the displayed protein. DIG
binding was assessed by quantifying the phycoerythrin (PE) fluorescence of the
displaying yeast population following incubation with DIG-BSA-biotin, DIG-
RNase-biotin, or DIG-PEG3-biotin, and streptavidin-phycoerythrin (SAPE). In
a typical experiment using DIG-BSA-biotin or DIG-RNase-biotin, cells were
resuspended in a premixed solution of PBSF (PBS plus 1 g L21 of BSA) containing
a 1:100 dilution of anti-c-Myc-FITC, 2.66mM DIG-BSA-biotin or DIG-RNase-
biotin, and 664 nM SAPE for 2–4 h at 4 uC. Cellular fluorescence was monitored
on an Accuri C6 flow cytometer using a 488-nm laser for excitation and a 575-nm
bandpass filter for emission. Phycoerythrin fluorescence was compensated to
minimize bleed-over contributions from the FITC channel. Competition assays
with free DIG were performed as above except that between 750mM and 1.5 mM
DIG was added to each labelling reaction mixture. Full details are given in
Supplementary Methods.
Affinity maturation. Detailed procedures for constructing and selecting all lib-
raries, including those for deep sequencing, are provided in Supplementary
Methods. Yeast surface display library selections were conducted on a Cytopeia
inFlux cell sorter using increasingly stringent conditions. In all labelling reactions
for selections, care was taken to maintain at least a tenfold molar excess of label to
cell surface protein. Cell surface protein molarity was estimated by assuming that

an attenuance at 600 nm (D600 nm) of 1.0 5 1 3 107 cells ml21, and that each cell
displays 50,000 copies of protein22. For each round of sorting, we sorted at least 10
times the theoretical library size. FlowJo software v. 7.6 was used to analyse all data.
Cell sorting parameters and statistics for all selections are given in Supplementary
Table 9.
Next-generation sequencing. Two sequencing libraries based on DIG10.1 were
assembled by recursive PCR: an amino-terminal library (fragment 1 library) and a
carboxy-terminal library (fragment 2 library). To introduce mutations, we used
degenerate PAGE-purified oligonucleotides in which the bases coding for 39
selected binding site amino acid residues were doped with a small amount of each
non-native base at a level expected to yield 1–2 mutations per gene (TriLink
BioTechnologies) (Supplementary Table 10). Yeast cells were transformed with
DNA insert and restriction-digested pETCON37. Surface protein expression was
induced22 and cells were labelled with anti-c-Myc-FITC and sorted for protein
expression. Expressing cells were recovered, induced, labelled with 100 nM of
DIG-PEG3-biotin for .3 h at 4 uC and then SAPE and anti-c-Myc-FITC for
8 min at 4 uC, and then sorted. For each library, clones having binding signals
higher than that of DIG10.1 were collected (Supplementary Fig. 9). To reduce
noise from the first round of cell sorting, the sorted libraries were recovered,
induced, and subjected to a second round of sorting using the same conditions
(see Supplementary Methods).

Library DNA was prepared as described25. Illumina adaptor sequences and
unique library barcodes were appended to each library pool by PCR amplification
using population-specific primers (Supplementary Table 11). DNA was sequenced
in paired-end mode on an Illumina MiSeq using a 300-cycle reagent kit and custom
primers (see Supplementary Methods). Of a total of 5,630,105 paired-end reads,
2,531,653 reads were mapped to library barcodes (Supplementary Table 12). For
each library, paired-end reads were fused and filtered for quality (Phred $ 30). The
resulting full-length reads were aligned against DIG10.1 using Enrich38. For single
mutations having $7 counts in the original input library, a relative enrichment
ratio between the input library and each selected library was calculated23–25.
The effect of each amino acid substitution on binding, DEx

i , was computed with
equation (1),

DEx
i ~log2

f x,sel
i

f x,unsel
i

 !
{log2

f orig,sel
i

f orig,unsel
i

 !
ð1Þ

in which f x,sel
i is the frequency of mutation x at position i in the selected population,

f x,unsel
i is the frequency in the unselected population, f orig,sel

i is the frequency of the

original amino acid at position i in the selected population, and f orig,unsel
i is the

frequency of the original amino acid in the unselected population.
Fluorescence polarization binding assays. Fluorescence-polarization-based
affinity measurements of designs and their evolved variants were performed as
described30 using Alexa488-conjugated DIG (DIG-PEG3-Alexa488). Fluorescence
anisotropy (r) was measured in 96-well plate format on a SpectraMax M5e micro-
plate reader (Molecular Devices) with lex 5 485 nM and lem 5 538 nM using a
515-nm emission cut-off filter. Fluorescence polarization equilibrium competition
binding assays were used to determine the binding affinities of DIG10.3 and its
variants for unlabelled DIG, digitoxigenin, progesterone,b-oestradiol and digoxin.
The inhibition constant (Ki) for each protein–ligand interaction was calculated
from the measured total unlabelled ligand producing 50% binding signal inhibi-
tion (I50; see Supplementary Methods) and the Kd of the protein-label interaction
according to a model accounting for receptor-depletion conditions30. Full details
are provided in Supplementary Methods.
ITC. ITC studies were performed on an iTC200 microcalorimeter (MicroCal) at
25 uC in PBS, pH 7.4. Ligand solutions were prepared by diluting a stock solution
of DIG (100 mM in 100% dimethylsulphoxide (DMSO)) into the flow-through of
the last buffer aliquot used to exchange the protein (final DMSO concentrations
were 1–3%). ITC titration data were integrated and analysed with Origin 7.0
(MicroCal). Full details are provided in Supplementary Methods.
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