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SUMMARY

We describe an improved method for comparative
modeling, RosettaCM, which optimizes a physically
realistic all-atom energy function over the confor-
mational space defined by homologous structures.
Given a set of sequence alignments, RosettaCM
assembles topologies by recombining aligned seg-
ments in Cartesian space and building unaligned
regions de novo in torsion space. The junctions
between segments are regularized using a loop
closure method combining fragment superposition
with gradient-based minimization. The energies of
the resulting models are optimized by all-atom
refinement, and the most representative low-energy
model is selected. The CASP10 experiment suggests
that RosettaCM yields models with more accurate
side-chain and backbone conformations than other
methods when the sequence identity to the tem-
plates is greater than �15%.
INTRODUCTION

Protein structures are crucial to understanding biological

function, but have been experimentally determined only for a

small fraction of known proteins; this fraction continues

to decrease as high-throughput sequencing identifies large

numbers of protein sequences. Fortunately, structures are now

known for at least one representative of most protein families,

and comparative modeling methods can be used to generate

models of many proteins using these representative structures

as starting points (Pieper et al., 2011).

Comparative modeling proceeds in two steps: first, the

protein sequence being modeled is aligned to evolutionarily

related sequences with known structures; and second, three-

dimensional models are built guided by information from these

structures. Many excellent methods for comparative modeling

have been developed, including the widely used MODELLER

program (Eswar et al., 2006; Sali and Blundell, 1993) and, more

recently, I-TASSER (Xu et al., 2011) and other methods that

explicitly recombine multiple templates.

The Rosetta structure modeling methodology utilizes efficient

conformational sampling techniques and a physically realistic

all-atom energy function to achieve atomic accuracy in many
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challenging structural biology problems, including structure

determination with sparse experimental data and de novo design

of protein structures and interfaces (Fleishman et al., 2011;

King et al., 2012; Raman et al., 2010). Previous comparative

modeling efforts in Rosetta (Raman et al., 2009; Thompson

and Baker, 2011) produced accurate models in some cases

but were unable to combine structural information from multiple

templates.

Here, we describe RosettaCM, a recently developed

comparativemodeling method that assembles structures using -

integrated torsion space-based and Cartesian space template

fragment recombination, loop closure by iterative fragment

assembly andCartesian spaceminimization, and high-resolution

refinement. Results from the CASP10 (Critical Assessment

of Techniques for Protein Structure Prediction) blind evaluation

of current structure prediction methodology suggest that,

given a set of input alignments to templates of known structure,

RosettaCM generates models with higher accuracy over all

backbone and side-chain atoms than other current methods.
RESULTS AND DISCUSSION

We begin with a brief overview of the RosettaCM protocol; a

complete description is provided in the Experimental Proce-

dures. Starting from alignments of the query sequence to

templates of known structure, which may be generated using

remote homolog detection methods such as PSIBLAST (Altschul

et al., 1997) or Hhsearch (Remmert et al., 2012), or using expert

knowledge, RosettaCM builds models in three stages as out-

lined in Figure 1. In the first stage, the query sequence is

threaded onto each of the templates, and the resultant threaded

partial models are aligned in a single global frame. Full-chain

models are then generated by Monte Carlo sampling guided

by the Rosetta low-resolution energy function supplemented

with distance restraints from the template structures and a

penalty for separation in space of residues adjacent in the

sequence (Figure S1 available online). Structures are built up

using a Rosetta ‘‘fold tree’’ (Das and Baker, 2008); the global

position of each segment is represented in Cartesian space,

whereas the backbone and side-chain conformation of residues

in each segment are represented in torsion space. Two types

of Monte Carlo moves are used: first, substitution of the torsion

angles from a Rosetta de novo modeling fragment selected from

the PDB using local sequence information (Figure 1B); and sec-

ond, substitution of the coordinates of a template segment (Fig-

ure 1C). This recombination of template-derived fragments in
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Figure 1. RosettaCM Protocol

(A) Flowchart of the RosettaCM protocol.

(B–D) RosettaCM conformational sampling. See also Figure S1.

(B) Torsion space fragment insertion. Blue indicates before fragment insertion; red, after fragment insertion. Structures are built outward from the origin (small

coordinate system) using first the rigid body transforms to the centers of the segments and then the torsion angles from the centers to the end of the segments.

Because the effects of torsion angle changes do not propagate beyond segment boundaries, the overall topology is better maintained than in conventional

continuous chain torsion space Monte Carlo.

(C) Recombination of template segments in Cartesian space. Blue indicates before and red, after segment replacement.

(D) Local structure optimization and loop closure. First, a fragment is superimposed onto the current pose (red), and second, energy minimization smoothly

resolves structural distortions at the fragment junctions.
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Cartesian space andRosetta de novo fragments in torsion space

generally converges to the correct topology, but the geometry at

segment boundaries is often poor, with clashes, distorted pep-

tide bonds, and poor backbone hydrogen bond geometry.

The second stage improves model geometry and further

explores conformational changes away from the starting tem-

plates through Monte Carlo sampling with two-step moves

(Figure 1D). In the first step, a backbone region is randomly

selected and replaced by either a de novo fragment, which

spans the region and has N and C termini that can be roughly

superimposed on the corresponding residues in the current

model, or a template-derived fragment superimposed over all

corresponding residues. The de novo fragment substitutions

are biased toward regions with poor backbone-bonded geo-

metry, primarily the stage one segment boundaries. In the

second step, quasi-Newton minimization is carried out over the

entire protein in Cartesian space, using a smoothed version of

the Rosetta low-resolution energy function (Rohl et al., 2004),

to optimize backbone geometry and hydrogen-bonding inter-

actions. The result of Monte Carlo sampling using these

composite fragment superposition and energy minimization

moves is smooth and realistic loop closure—facilitated because
1736 Structure 21, 1735–1742, October 8, 2013 ª2013 Elsevier Ltd A
the loop takeoff and return positions can shift to promote

closure—where every local backbone segment is ‘‘protein like’’

(Figures 1D and S1A). Finally, in the third stage, side chains are

built on and the structure is optimized by standard Rosetta

full-atom refinement using a physically realistic energy function

(Tyka et al., 2011).

The balance between the Rosetta energy function, which

favors physically realistic conformations, and the template-

derived restraint energy functions determines how close the

resultant models are to the input template structures. This

balance is set by a single overall weight, which we have

optimized over a diverse training set as described in the

Supplemental Experimental Procedures (Figure S3). In specific

applications, the user may wish to alter this parameter and

to vary the extent to which each template/alignment contributes

to the restraint functions. In the calculations described in the

remainder of this paper, the overall weight was set to the value

optimal for the training set, and the contributions of each align-

ment to the restraint functions were weighted based on the

alignment likelihood, with close alignments contributing more

strongly than weak alignments (see Supplemental Experimental

Procedures and Figure S3).
ll rights reserved
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A long-standing question in the structure prediction field is the

extent to which comparative models improve over the available

template structures. Many widely used comparative modeling

packages and servers produce models that cover the entire

sequence of a protein, whereas the available templates in gen-

eral do not; hence, comparative models generally have more

residues superimposable on the actual structure than the original

template. Less trivial are improvements in the aligned regions,

which require shifts away from the starting template coordinates.

To assess the extent to which RosettaCM improves models

beyond the best-available template over a large and unbiased

set of structures, we participated in the CAMEO project (Contin-

uous Automated Model EvaluatiOn, http://www.cameo3d.org/)

in which recently solved structures deposited in the PDB but

not yet publicly released are made available to prediction

servers; all models must then be submitted prior to the public

release data. Analysis of statistics collected between May 1,

2012 and March 31, 2013 by the CAMEO experiment showed

that RosettaCM consistently improves over the available tem-

plates in the aligned regions (Figure S2A).

To compare RosettaCM to the earlier Rosetta ‘‘rebuild and

refine’’ protocol (LoopRelax), a benchmark set was selected

from CAMEO to cover different ranges of modeling difficulties

(Table S2). RosettaCM differs from the earlier protocol both in

the explicit use of multiple templates and in the loop closure/

structure optimization protocol. To separate out these effects,

we first compared the methods using a single template for

each case. As shown in Figure S2, using a combination of frag-

ment insertion and Cartesian-space minimization of the Rosetta

low-resolution energy function improves over the cyclic coordi-

nate descent method used in the earlier protocol; this is likely

because this approach allows readjustments promoting loop

closure over the whole backbone. Further improvements are

observed (Figure S2) when multiple input templates are used in

modeling compared to just using the top-ranked (in the

sequence-based search of the PDB) template; the explicit tem-

plate recombination in RosettaCM is a considerable advantage

when different parts of the query sequence are better modeled

by different templates. The improvements over the earlier rebuild

and refine protocol are primarily for intermediate-difficulty tar-

gets (Figure S2G).

It is not trivial to accurately assess the performance of a

structure modeling method relative to methods developed by

other groups. Even if the structure modeling software is avail-

able, there are generally a number of settings, and a nonexpert

may not run the calculations in an optimal way. For this reason,

to evaluate the strengths and limitations of RosettaCM, we

analyze its performance in the CASP10 structure prediction

experiment. In CASP10, the RosettaServer ran the RosettaCM

protocol starting from templates and alignments identified by

Hhsearch (Remmert et al., 2012), SPARKS-X (Zhou and Zhou,

2004), and RaptorX (Peng and Xu, 2009). As noted above, the

accuracy of comparative models depends not only on the

quality of the model-building approach but also on the input

templates and alignments. To evaluate the model-building

approach in RosettaCM independent of template recognition

and alignment generation, we focused on the subset of closer

homology targets for which most methods used the same

templates and alignments. We used the structural similarity
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(as measured by the GDT) between the first models submitted

in the CASP10 experiment by the RosettaServer and the state

of the art HHpredA (a widely used public server) (Söding et al.,

2005) and ZhangServer (the top-performing server in CASP10)

as a measure of the extent of convergence on templates and

alignments. The 63 domains for which the average GDT between

the first models was 70% or above were selected for detailed

analysis (Table S1) to reduce the impact of differences in

template selection.

To compare the performance of the methods, we utilized

statistics computed and made publicly available by the

CASP10 (http://predictioncenter.org/casp10/) organizers (http://

predictioncenter.org/casp10/index.cgi) and the Zhang lab

(http://zhanglab.ccmb.med.umich.edu/casp10/). The accuracy

of the modeled protein backbone was assessed using the GDT

(Zemla et al., 1999), the accuracy of the side-chain placements

by the GDC-SC (Zemla, 2003), and the accuracy of the polar

interactions by the fraction of recovered native hydrogen bonds

(see Supplemental Experimental Procedures for detailed

descriptions of these metrics). According to all three metrics,

on the 63 targets for which template selection and alignment

generation were straightforward, the RosettaServer models

were better than those of other servers both on average and in

having the most top models (Figure 2). Overall stereochemical

quality—as reported by the MolProbity score (Davis et al.,

2007)—was also highest for the RosettaServer models. On the

complete set of 127 domains, RosettaServer had the most top

models (Figure 2, left), although the performance of the Zhang

server was considerably better according to the standard

CASP sum of Z scores metric (Tramontano et al., 2001) because

the RosettaServer did quite poorly on several targets due to

errors in template identification and domain parsing.

What is the origin of the improved model-building per-

formance evident in Figure 2? To build a good model, a com-

parative modeling method should (1) improve over the closest

template in the aligned regions, and (2) properly reconstruct

the loops and other regions not present in the templates. The

per-residue changes in model accuracy relative to the closest

available templates for RosettaCM and several other top

methods are compared in Figure 3B. Most residues

are already quite close to the correct positions in the

starting templates, and hence, most frequently, the devia-

tions are close to zero. A subset of residues is in significantly

different positions in the starting template and the actual struc-

ture, and for these residues, modeling methods can make sub-

stantial improvements. For this subset, RosettaCM produced

the largest number of improvements over the target set as indi-

cated by the greater number of decreases in deviation of more

than 1.5 Å (Fig 3B, left most bars). Of residues that are

improved by over 1.5 Å, 27% are on a helix, 3% are on a

strand, and 70% are either on a loop structure or at the junction

between a loop and a helix or strand.

Examples of the improvements are shown in Figure 4. In

Figures 4A–4C, the difference in model quality relative to

the best template is shown along the linear sequence for the

RosettaServer model and for several other top servers. The

RosettaServer models show pronounced dips below the x

axis, indicating improvement relative to the best template. The

structural comparisons in the lower insets illustrate structural
1742, October 8, 2013 ª2013 Elsevier Ltd All rights reserved 1737
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Figure 2. RosettaCM Performance in

CASP10

For each CASP10 target, performance statistics

were downloaded from the CASP10 website and

used to rank the servers based on (A and B) global

structural similarity, as measured by the GDT-TS

metric (Zemla et al., 1999), (C and D) accuracy of

side-chain placement, as measured by the GDC-

SC metric (Keedy et al., 2009), (E and F) stereo-

chemical quality, as assessed by the MolProbity

score (Davis et al., 2007), and (G and H) the frac-

tion of native hydrogen bonds (http://zhanglab.

ccmb.med.umich.edu/casp10/). (A), (C), (E), and

(G) indicate, for each of the four metrics, the

number of targets for which each server produced

the best-scoring model; servers are ordered on

the x axis based on this number. The counts for the

63 easier target subset are shown in black, and

those for the rest of the targets in gray. The arrow

indicates the RosettaCM result. (B), (D), (F), and (H)

are histograms of the sum or average of each of

the four scores over the 63 easier target subset

(sum of GDT-TS Z scores is in B; average GDC-

SC, MolProbity score, and fraction of native

hydrogen bonds are in D, F, and H). The y axis is

the number of servers in the total score interval on

the x axis. Arrows indicate the RosettaCM score

interval. Models with better stereochemistry have lower MolProbity scores. Seven servers with summedGDT-TS Z score <�30 (B) were excluded from the GDC-

SC, MolProbity, and native hydrogen bonds summaries because evaluations of side-chain and physical properties of the models are only meaningful when the

global structure is correct. The CASP10 targets the average GDT between the first model by the three servers (RosettaServer, HHpredA, and ZhangServer), and

the templates used by RosettaCM are listed in Table S1. Additional analysis of the 63 easy targets based on sequence identity between the target and the closest

template is shown in Figure S4.
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changes taking place during modeling for the regions indicated

by the red arrows. The most-often observed scenario was

improvement in loop regions (Figure 4A). Concerted impro-

vements in secondary structure placement and loop geometry

were also often observed (Figures 4B and 4C).

Loop region improvement is illustrated by T0667. In target

T0667, there is a deletion in the residue 161–163 loop in the

closest template (2WTM). There is another template with a

loop of the same length (1ISP), but the conformation is quite

different (2 Å over the three loop residues; Figure 4D). The Roset-

taCMmodel is much closer to the native structure (0.9 Å over the

loop region; Figure 4G) compared to the other server models

(Figure 4J). The improvement in loop modeling lowers the rmsd

for the residues indicated by the arrow in Figure 4A. The

improvement in model accuracy comes from combining frag-

ments from the lower-ranked template, and energy minimization

after the fragment is superimposed.

Concerted backbone repositioning is illustrated by T0702 and

T0685. In T0702, a nonconservative glycine-to-histidine substi-

tution at position 5 results in a side-chain-side-chain hydrogen

bond with Asn 59 that does not exist in the template, which is

associated with a helix shift and loop structure change relative

to the closest template, 2RCY (Figure 4E). The RosettaCMmodel

recapitulates this hydrogen bond, and the associated helix shift

and loop changes (Figure 4H). The other server models do not

reproduce the hydrogen bond or the backbone structural

changes (Figure 4K). These changes together improve the

rmsd in the region indicated by the arrow in Figure 4B. Similarly

in T0685, the interhelix interaction between a Phe and Tyr in the

top template used by all three servers, 2C2A, is changed to Ala
1738 Structure 21, 1735–1742, October 8, 2013 ª2013 Elsevier Ltd A
and Gly in the target, which causes two helices to collapse

toward each other (Figure 4F). RosettaCM is able to model this

change as well as the loop connecting the helix accurately (Fig-

ure 4I). In comparison, other methods either stayed close to the

template structure or modeled the helix shift but not the confor-

mational changes in the loop region (Figure 4L).

RosettaCM is freely available to academic users as part of

the Rosetta software suite. As detailed in Supplemental Experi-

mental Procedures, the user provides—in addition to the protein

sequence—a set of template structures and sequence align-

ments to these structures. Available experimental data—elec-

tron density maps, NMR data (chemical shifts, RDCs, and

NOEs), and X-ray diffraction data—can be input into RosettaCM

to supplement homologous structure information. RosettaCM

is also available through the ROBETTA server, which uses

Hhsearch (Remmert et al., 2012), SPARKS-X (Zhou and Zhou,

2004), and RaptorX (Peng and Xu, 2009) to generate the input

alignments. It is clear that improved results can be obtained

using more sensitive remote homolog detection and sequence

alignment methods, and methods’ developers working in these

areas should be able to use RosettaCM to build improved

models. In particular, the superb remote homolog detection

by the Zhang group based on structural similarity with de novo

models should greatly improve modeling of proteins based on

very distantly related targets.

The run time of RosettaCM is determined by the number of

independent trajectories carried out. A singlemodeling trajectory

for a 200-residue protein takes about 10 minutes, and—for

sequences with greater than 25% sequence identity to a protein

of known structure—only five to ten trajectories are necessary
ll rights reserved
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Figure 3. RosettaCM Improves Model Accu-

racy in the Aligned Regions Relative to Start-

ing Template Structures

(A) Distribution of DGDT for 847 targets used in

CAMEO benchmark test, where DGDT is the

difference in GDT between RosettaCM models and

the top-ranked template calculated over the aligned

region (positive values are improvements). A scatter

plot comparing GDT of RosettaCM models over the

aligned region and the top-ranked templates is

shown in Figure S2.

(B) Histogram of per-residue changes in model ac-

curacy relative to the closest available templates

over the 63-target subset from CASP10. Per-residue deviation data for each target were obtained from the CASP10 web page. The x-axis (Ddeviation), is

calculated as distance(model) — distance(template), where distance(model) and distance(template) are pre-residue distance between the model (or the

template) and the native structure. Negative values indicate improvements over the closest template. Numbers of residues in different deviation ranges are shown

for RosettaServer (green), HHpredA (blue), ZhangServer (magenta), and the average of the rest of the top 20 servers (gray). The SDs of the rest of the top 20

servers are shown as error bars. Comparisons to all the servers are shown in Figure S4.

Structure

RosettaCM Modeling
for accurate modeling (see Supplemental Experimental Proce-

dures). Hence, RosettaCM could be used in conjunction with

servers such as HHsearch, which produce accurate alignments

using robust statistics with very little wait time.

EXPERIMENTAL PROCEDURES

RosettaCM Protocol

The workflow in the RosettaCM modeling protocol is outlined in Figure 1. The

inputs to RosettaCM are alignments of the sequence of the protein of interest

to proteins of known structures, and standard Rosetta de novo modeling

fragment sets to model the unaligned regions and to explore deviations from

the templates in the aligned regions. The alignments to proteins of known

structure can be generated using remote homolog detection programs such

as PSIBLAST (Altschul et al., 1990), Hhsearch (Remmert et al., 2012),

SPARKS-X (Zhou and Zhou, 2004), and RaptorX (Peng and Xu, 2009), or using

expert knowledge of the protein family and any available experimental

information. The user can provide an optional file specifying the weight to be

given to each alignment during modeling (‘‘weights’’ file); if no weights file

is provided, the input alignment file should be ordered such that the most

confident alignments are first, i.e., RosettaCM assumes in the absence of a

provided weights file the decrease in alignment accuracy from the top-ranked

model to the nth ranked model observed for HHsearch alignments for a large

set of proteins. Rosetta de novo fragment files can be generated using the

Rosetta program or ROBETTA server as described elsewhere.

RosettaCM builds models from these inputs as described in the following

paragraphs. The RosettaCM script provided in the Supplemental Experimental

Procedures carries out all of the steps.

Probabilistic distance restraints are generated from theweighted input align-

ments as described previously (Thompson and Baker, 2011). For short gaps,

the contribution of alignments lacking a particular pair of residues to these dis-

tance constraints is the background distance distribution (see Thompson and

Baker, 2011). If there is a gap longer than 50 residues in one template, then the

contribution of this template to the gapped residues is excluded, and the contri-

bution of the rest of the templates is renormalized to avoid blurring out the re-

straints in domains that are only represented in a subset of the alignments.

Models are then assembled and optimized in three stages. In the first stage,

complete chainmodels are built up by recombining fragments from the aligned

template structures anddenovo fragments representing the unaligned regions.

In the second stage, deviations from the templates are explored, and gaps in

themodels are closed using a combination of fragment superposition andCar-

tesian spaceminimization. In the third stage, side-chain and backbone confor-

mations are optimized using Rosetta full-atom refinement.

Stage 1

Global Superposition

A stochastic procedure is used to select a template, which is then used to

generate a global superposition of the aligned portions of the templates.
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Because the global alignment most consistent with the actual structure is

unknown in advance, this is done independently for each model generated

to sample different possible global superpositions. First, for each alignment,

the sequence of interest is threaded onto the corresponding template struc-

tures to generate a set of partial threads. One of the partial threads is randomly

selected as the base model for the superposition with probability given by

the user specified or default weight assigned to the alignment as described

above. For each of the remaining partial threads, the coordinates are trans-

formed to minimize the rmsd with the base thread over the residues they

have in common. Partial threads with no residues in common with the base

model are eliminated. If a partial thread is parsed into multiple domains (using

DDOMAIN; Zhou et al., 2007), each domain is superimposed independently,

resulting in global orientation between domains similar to that in the base

model, with structural variations within domains from the different partial

threads.

Template Fragment Generation

To allow recombination of structural elements present in the global super-

position, each partial thread is broken up into segments corresponding to

secondary structure elements. Secondary structure is first assigned using

DSSP (Kabsch and Sander, 1983), and continuous helices of at least six

residues or strands of at least three residues are added to a fragment list.

The interconnecting loops are split and joined to the connected helix or

strand segment. Secondary structure segments separated by less than three

loop residues are grouped into the same segment so kinked helices and tight

b hairpins are treated as a single rigid segment.

Fragment Recombination

Full-chain models are generated by recombining the template-derived

segments with Rosetta de novo fragments that cover the regions not repre-

sented in the templates. Unaligned regions are split in half, and each half

is associated with the adjacent aligned region. Structures are generated

from the template and Rosetta de novo fragments according to a Rosetta

fold tree: the global position of each segment is represented in Cartesian

space, whereas the backbone and side-chain conformations of each segment

are represented in torsion space. A Monte Carlo trajectory is carried out with

two types of moves. (1) Substitution of the backbone torsion angles of a

randomly selected Rosetta de novo fragment for the current torsion angles

of these residues, and regeneration of coordinates according to the fold tree

(Figure 1B). The segmentation of the protein limits propagation of torsion angle

changes to the closest end of the segment. (2) Substitution of the coordinates

of a randomly selected partial thread-derived fragment (in the global frame) for

the current model coordinates of these residues (Figure 1C).

The scoring function used in the Monte Carlo trajectory is a linear combina-

tion of the Rosetta low-resolution (centroid) energy function, which favors

compact structures with buried hydrophobic residues and paired b strands,

the template-derived restraint functions described above, and a chain

break term that penalizes large distances between residues adjacent in the

sequence that can arise at fold tree boundaries (the middle of unaligned

regions). As in the Rosetta de novo structure prediction protocol (Rohl et al.,

2004), these terms are gradually phased in. At the beginning of the trajectory,
1742, October 8, 2013 ª2013 Elsevier Ltd All rights reserved 1739



Figure 4. Examples of Improvements over Starting Templates in CASP10

(A)–(C) Per-residue change in accuracy relative to the best template of RosettaCM (green), HHpred (blue), and ZhangServer (magenta) for T0667 (left), and T0702

(middle), and T0685 (right). Values less than zero indicate regions in which the submitted model is closer to the true structure than the best template. Results are

shown for first submitted models. The structural comparisons in (D)–(L) are over the region with the largest improvements over the templates indicated by the red

arrow in (A)–(C). (D–L) The native structures are in black, the best template is in orange (D–F), and models from RosettaServer are in green (G–I). HHpredA and

ZhangServer models are in blue and magenta for comparison (J–L). Orange labels, aligned template residue identities; black labels, the target residue identities.
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only excluded volume interactions are considered, then secondary structure

pairing and hydrophobic burial, and then the remaining terms. The chain break

term between residues in separate branches of the fold tree but adjacent in

the linear sequence is jr�r0j, where r is the distance between the bonded

atoms, and r0 is the idealized bond length between the atoms. This term is

set to zero at the first half of the Monte Carlo trajectory and linearly ramped

up to full strength in the second half. This allows large structural changes

to be sampled while still favoring separations small enough so that the gaps

are closable in the second phase.

The total number of steps in these first-stage Monte Carlo trajectories was

set to 10,000, with 5,000 attempts at inserting template fragments and 5,000

for de novo fragment insertions. Both the total numbers of Monte Carlo steps

and the ratio between two types of fragment insertions are adjustable. This first

stage takes about 1 min for a 150-residue protein. The lowest-energy structure

sampled during the trajectory is passed on to the second stage.

Stage 2

The models generated in stage 1 contain all residues and generally have the

correct overall topology but are suboptimal in two ways: first, the aligned re-

gions are often very close to one of the input template structures; and second,
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the backbone geometry at the junctions between fold tree branches is often

quite distorted. To sample further from the input template structures, and to

close the loops, a Monte Carlo trajectory using a two-step move is carried

out. The first step consists of random selection of a de novo or template-based

fragment, and substitution into the current conformation of the coordinates

of the superimposed fragment. In the de novo fragment case, the N- and

C-terminal residues of the fragment are superimposed on the corresponding

residues of the current conformation (Figure 1D), and the fragment insertions

are biased toward regions in which the backbone is most distorted as

assessed by the local bond length and bond angle energies. In the template

fragment case, the superposition is over all residues in the fragment, not just

the termini. Following the fragment insertion, Cartesian space quasi-Newton

(BFGS) minimization is carried out using a differentiable version of the Rosetta

centroid energy function described in the next paragraph, the template-

derived restraints, and explicit bond length, bond angle, and improper torsion

energy terms in place of the relatively weak chain break term used in stage 1

(Figure 1D).

The differentiable centroid energy function makes use of smooth reparame-

terizations of the centroid pair and environment terms, which enforce pair

distributions and nonpolar burial, respectively, and the Cb and cenpack terms,
ll rights reserved
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which enforce native-like core packing (Rohl et al., 2004). The smooth repara-

meterizations fit mixtures of Gaussians to empirically derived distributions;

the relatively small number of Gaussians needed to fit these distributions

(generally two to four for each pair distance distribution) offers a significant

reduction in parameters versus the previous table-based parameterization.

Neighbor counts are sigmoid smoothed. The resulting continuously differen-

tiable energy function allowsminimization with centroid energies, which allows

optimization of backbone hydrogen bond and covalent-bonded geometry,

without requiring the expensive rotamer optimization calculations needed to

accurately compute all-atom energies.

As described previously, each move in the second-stage Monte Carlo

trajectories involves fragment insertion by superposition followed by full

backbone minimization. The total number of attempted moves is 1,500, with

1,000 template fragment insertions and 500 de novo fragment insertions.

This second stage takes 5 min for a 150-residue protein. The lowest-energy

structure sampled during the trajectory is passed on to the final full-atom

refinement phase.

Stage 3

The low-energy structures resulting from the stage 2 trajectories have near-

ideal backbone geometry, but side chains are not explicitly represented. In

stage 3, the Rosetta Monte Carlo combinatorial side-chain optimization

method is used to build on side chains, and the recently developed Rosetta

‘‘FastRelax’’ protocol is used to iteratively refine the side-chain and backbone

conformations (Tyka et al., 2011). Annealing is carried out by ramping up

and down the strength of the repulsive interactions and, at each iteration,

repacking the side chains and subjecting the whole structure to quasi-Newton

optimization of the side-chain and backbone coordinates first in internal

coordinates and then in Cartesian coordinates. The Rosetta full-atom energy

function supplemented with the alignment-derived restraint function is used

in all calculations with the weight on the repulsive interactions varied as

described above.

Model Selection

Final models (which may be generated from different seed alignments) are

collected, and the best 10% of the models by energy is identified. These

structures are then clustered, and the center of the largest cluster (where

each model is weighted such that low-energy models have highest weight;

Xiang et al., 2002) is selected as the top model. In cases such as CASP where

multiple models are desirable, additional models are identified by repeating

the clustering process after the 10% of the models closest to the selected

model is removed.

SUPPLEMENTAL INFORMATION
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