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SUMMARY

Recent studies have shown that explicit solvent mo-
lecular dynamics (MD) simulation followed by struc-
tural averaging can consistently improve protein
structure models. We find that improvement upon
averaging is not limited to explicit water MD simula-
tion, as consistent improvements are also observed
for more efficient implicit solvent MD or Monte Carlo
minimization simulations. To determine the origin of
these improvements, we examine the changes in
model accuracy brought about by averaging at the
individual residue level. We find that the improve-
ment in model quality from averaging results from
the superposition of two effects: a dampening of de-
viations from the correct structure in the least well
modeled regions, and a reinforcement of consistent
movements towards the correct structure in better
modeled regions. These observations are consistent
with an energy landscape model in which the magni-
tude of the energy gradient toward the native struc-
ture decreases with increasing distance from the
native state.

INTRODUCTION

In the current protein structure rich era, an important chal-

lenge in the protein structure prediction field is the structure

refinement problem (Nugent et al., 2014). The ultimate aim

of protein structure refinement is to improve homology models

to the level of experimentally determined structures. Feig and

coworkers recently made a breakthrough in this area (Mirjalili

and Feig, 2012; Mirjalili et al., 2014), obtaining consistent blind

improvements to homology models in the recent Critical

Assessments of techniques for protein Structure Prediction

(CASP10) experiment (Nugent et al., 2014; Moult et al., 2014).

Although the results of Mirjalili et al. are very encouraging,

the origins of these improvements are not completely clear.

Their approach employed explicit water molecular dynamics

(MD) simulations with a molecular mechanics force field (Best

et al., 2012) and restraints to the starting coordinates, followed

by filtering the sampled ensemble using a knowledge-based

potential (Yang and Zhou, 2008) and, finally, generating a sin-
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gle representative model using structural averaging. A first

question is practical: can this expensive calculation be made

more efficient so as to be more broadly applicable? A second

question is more fundamental: what aspect of the Mirjalili

et al.’s protocol contributes to the consistency of refinement,

which has been a long-standing challenge in the field (Moult

et al., 2014)?

Here we investigate these questions by adapting Mirjalili

et al.’s approach to less computationally intensive sampling

methods. We show that structural averaging has a clearly bene-

ficial effect independent of simulation type (MD versus Monte

Carlo minimization [MCM]) and force field (explicit versus implicit

water model). We dissect the improvements in model quality at

the individual residue level, and find that in an ensemble of trajec-

tories, the improvements in the close to correct regions are

generally similar to one another and hence are reinforced by

averaging, while the divergences in the incorrect regions are

generally different from one another and hence dampened by

averaging.

RESULTS

Robust Improvements in Homology Models Using Short
Implicit Solvent Simulations
We show that consistent refinement can be achieved using short

simulationswith an implicit solvationmodel. Implicit solvent simu-

lation using Rosetta (Leaver-Fay et al., 2014) CartesianRefiner

(see the Experimental Procedures section) followed by filtering

and averaging consistently improves homology models (Fig-

ure 1A). Changes in radius of gyration are subtle, indicating that

the improvements are not an artifact of uniformly compressing

or expanding structures, and the stereochemistry also improves

(Figure 1 and Table S1). The improvements in RMSD are smaller

than those with high accuracy global distance test (GDT-HA)

(Kopp et al., 2007) and Ca local distance difference test (LDDT)

(Mariani et al., 2013), as has been found for explicit waterMD sim-

ulations (Mirjalili and Feig, 2012), suggesting that refinement ap-

proaches based on trajectory averaging are rather conservative

in refining incorrect parts of the structures (GDT-HA and Ca

LDDT are more tolerant of large local errors).

Structural averaging can generate improved models even

when less than half of the structures sampled in a trajectory

are closer to the native structure than the starting model (Figure

1B). The change in GDT-HA (DGDT-HA) (Kopp et al., 2007) from

the starting models to the ensemble-averaged models is corre-

lated with the fraction of improved structures in each ensemble
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A B Figure 1. Consistent Refinement Using

Implicit Solvent Simulations

Rosetta implicit solvent simulations were carried

out starting from CASP8-10 refinement targets

(see the Experimental Procedures section for

details).

(A) Comparison of starting (X axis) and refined

models (Y axis) by four measures: GDT-HA (Kopp

et al., 2007), Ca LDDT (Mariani et al., 2013), RMSD

(Å), and radius of gyration (Å). GDT-HA measures

the fraction of residues to within 0.5, 1.0, 2.0, and

4.0 Å of the native position after structural super-

imposition. Ca LDDTmeasures the similarity of the

Ca-Ca pairwise distance map within 5-Å cutoff

without structural superimposition. Overall, the

fraction of targets improved by refinement is

77.5%, 72.5%, 77.5%with average improvements

of 1.56%, 1.13%, and 0.13Å in GDT-HA, Ca LDDT,

and RMSD, respectively.

(B) Correlation between the fraction of structures

improved in the sampled trajectory (by GDT-HA, X

axis) and GDT-HA change in the final model

brought by refinement (Y axis). Each dot represents a single target among 40 test cases. Averaging results in improvements over the starting model when more

than 15% of the structures (dotted line) sampled in the trajectory are closer to the native structure than the starting model.

Table 1. Effect of Structural Averaging Using Different Sampling

Methods

Sampling Methods DGDT-HAa

Fraction Equal or

Improved (%)

MCM onlyb 0.56 75.0

MD onlyc 1.18 80.0

MCM+MDd 1.56 82.5

MCM+MD, without restraint 0.38 47.5
aAverage GDT-HA change from the starting models. Final models are

generated by averaging the selected trajectories in the first column.
bMCM by Rosetta FastRelax (Tyka et al., 2011) protocol.
cImplicit solvent MD simulation in Rosetta.
dTrajectories are selected among multiple MD and MCM simulations

based on their median statistical potential score (Zhou and Skolnick,

2011) (see the Experimental Procedures section for details).
(compared with the starting models). When more than 15% of

the sampled structures are improved over the starting structure,

the average structure is generally better than the starting struc-

ture. Averaging outperforms selecting a structure: (1) with the

lowest Rosetta energy, (2) with the lowest statistical potential

(Zhou and Skolnick, 2011), and (3) nearest to the cluster center.

The first two approaches, which purely rely on energy functions

(the first one used in sampling and the second orthogonal to that

used in sampling), do not provide consistent improvements (with

an average DGDT-HA of 0.0). Clustering only produces marginal

improvements (with an average DGDT-HA of 0.5), while aver-

aging yields an average DGDT-HA of 1.56.

The consistency of improvement upon averaging is similar us-

ing MD and MCM simulations (Table 1). Using ensembles from

MD trajectories, 80.0% of targets improve or stay on par with

an average GDT-HA increase of 1.2. Similarly, using MCM-

based methods, structure quality improved or stayed on par

for 75% of targets with an average GDT-HA increase of 0.6.

Combining models generated using different methods yields

improved results (Table 1). These results suggest that the robust-

ness of the improvement is not dependent on the sampling

method as long as the trajectory samples reasonable structural

diversity. Restraints to the starting structure are important: unre-

strained simulations yield only marginal improvements in struc-

ture accuracy even after averaging (Figure S1; mean GDT-HA

increase is 0.38).

Analysis of Refinement at the Individual Residue Level
To determine the origins of the improvement in model accu-

racy, we investigate the effects of refinement on the accuracy

of placement of individual residues. We first examined

the fluctuations in Ca positions of individual residues over sam-

ples of �100 structures generated from MCM and MD trajec-

tories for each of 40 different targets. We found that the magni-

tude of these fluctuations are correlated with the deviation of

the starting position of the residues from their positions in the

native structure: residues close to the native structure
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(<1.0 Å) to start out fluctuate relatively little (0.32 Å with SD

0.12 Å), while those that are far from the native structure

(>4.0 Å) undergo considerable fluctuations (0.45 Å with SD

0.26 Å) (Figure 2A).

The Role of Structural Averaging
The impact of structural averaging at the residue level can be

measured by the difference between the average accuracy in

the individual members of the ensemble (Figure 2B) and the ac-

curacy in the averaged structure (Figure 2C). The first of these

quantities reports on sampling in the individual trajectories. As

shown in Figure 2B (blue), residues undergoing intermediate

levels of fluctuations (0.3–0.6 Å) often improve considerably in

the trajectories. These improvements are offset by a general

deterioration in accuracy of residues undergoing larger levels

of fluctuations (Figure 2B, red); as described above, these are

the residues that in the starting structure are furthest from the

native structure. Averaging further increases the structural

improvements in the intermediate fluctuation range (Figure 2C,

blue) and considerably reduces the deterioration in accuracy of
ghts reserved
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Figure 2. Analysis of the Effect of Averaging

at the Individual Residue Level

(A) The magnitude of the fluctuations in the co-

ordinates of a residue during the trajectories in-

creases with increasing distance of the starting

coordinates from the native structure. The first and

third quartiles are shown as error bars. From (B) to

(D), residue model quality changes are plotted (Y

axis) as a function of the fluctuations of the residue

during the simulation (X axis, RMSF in Å) for the 40

targets in the study.

(B) The mean value of the per residue change

in RMSD (DRMSD) for each member of the

ensemble. DRMSD values are computed for each

residue in each member of the ensemble and the

resulting DRMSD values are then averaged.

(C) The per residue DRMSD of the ensemble-

averaged structure. Members of the ensemble are

first structurally averaged and then the per residue

DRMSD is computed for this averaged structure.

(D) The difference between the pre (B) and post (C)

structural averaging per residue DRMSDs. The Y

axis indicates the contribution of structural aver-

aging: negative values represent improvements

upon averaging. Residues with low fluctuation

(<0.2 Å), high fluctuation (>1.0 Å), or with large

improvements (<�0.4 Å) in the averaged struc-

tures are indicated with black, red, and blue cir-

cles, respectively. Residue-level model quality is

measured by residue RMSD on a nine-residue

window with the target residue at the center. For

comparison, the same analyses on unrestrained

simulations are provided in Figure S1.
the residues undergoing large fluctuations (Figure 2C, red).

The effects of averaging are isolated in Figure 2D by subtracting

the individual trajectory results in Figure 2B from the post

averaging results in Figure 2C. Compared with the ensemble

structures, averaging improves residue accuracy across the

fluctuation range, with the magnitude of the improvement

increasing with the fluctuation magnitude.

The net improvements to the starting structures during refine-

ment are consistent with these observations. In Table 2, resi-

dues are binned based on the magnitude of their fluctuations,

and the average change in RMSD is computed for residues in

each bin. The biggest contribution to improvement comes

from the medium-size fluctuation bin (root-mean square fluctu-

ation [RMSF] range from 0.42 to 0.53 Å). The net DRMSD during

refinement in this bin changes from �13.3 (average value of

ensemble structures) to �58.0 Å (averaged structure). In regions

undergoing large fluctuations (RMSF range over 0.64 Å, red cir-

cles in Figure 2), significant errors in the ensemble of structures

(+24.0 Å) are reduced considerably by averaging (�5.0 Å).

Because the magnitude of residue-level fluctuations is corre-

lated with distance from the native structure, similar trends

are observed when residues are binned based on their RMSD

to the native structure in the starting model. Except for residues

essentially already in the correct positions, which have no

further room for improvement, residues closer to their native

positions tend to show lower fluctuations (Figure 2A), bigger

decreases in net RMSD (Figure 3A) and higher frequencies of

improvement (Figure 3B). Residues far from their native posi-

tions tend to move further away in the individual trajectories
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and these divergences are to some extent canceled out by

averaging.

The effects of averaging are similar but even more pronounced

for the trajectories carried out in the absence of restraints. The

overall shape of the dependence of the effect of averaging on fluc-

tuation magnitude (Figure S1) is similar although the absolute

magnitude of the fluctuations is larger. The mean RMSD per resi-

due in the absence of restraints decreases from 1.1 Å to �0.02 Å

upon averaging, and in the presence of restraints, from 0.0 Å

to �0.04 Å (negative means improvement). The distributions of

the RMSD changes in the presence and absence of restraints

areshown in the lowerpanelsofFigure3.Muchof the improvement

by averaging in unrestrained simulation results from dampening

of the largestfluctuations:�30%of residueshavemeandeviations

of greater than 0.5 Å before averaging and only�5%after. Hence,

the contributions of averaging and the trajectory restraints to the

overall success of refinement are independent: averaging leads

to considerable improvements in either case and the restraints

considerably improve the ensemble structures being averaged.

The Role of Explicit Water and Loop Modeling in the
Refinement Problem
Despite its successful reproduction of robust refinement, our

implicit solvent approach shows a smaller extent of improve-

ment on average compared with explicit water simulations.

For the same 40 targets, the GDT-HA improvement is 1.56 in

this study compared with 2.8 by long explicit solvent simula-

tions (Mirjalili and Feig, 2012). While some of this reduction is

due to the reduced sampling of our approach (approximately
23–1128, June 2, 2015 ª2015 Elsevier Ltd All rights reserved 1125



Table 2. Dependence of Net Change in RMSD during Refinement on Magnitude of Fluctuations

RMSF Range (Å) % Resa

DRMSD (Å)b,

Ensemble Average

DRMSD (Å)b, Averaged

Structure

DPer Residued (Å)Netc Per Residue Netc Per Residue

�0.24 10% +4.9 +0.010 +0.2 0.000 �0.010

0.24–0.28 10% �4.8 �0.010 �17.7 �0.037 �0.027

0.28–0.34 20% �0.6 �0.001 �29.1 �0.030 �0.029

0.34–0.42 20% �5.7 �0.006 �45.5 �0.047 �0.041

0.42–0.53 20% �13.3 �0.014 �58.8 �0.061 �0.047

0.53–0.64 10% +2.3 +0.005 �20.3 �0.042 �0.047

0.64–1.41 10% +24.0 +0.050 �5.0 �0.010 �0.060

Sum 100% +6.9 +0.001 �176.1 �0.036 �0.037
aPercentage of residues in the indicated RMSF range.
bRMSD change from starting structures. Negative values are improvements.
cSum over all residues in the RMSF bin.
dPer residue DRMSD change from ensemble average to the averaged structure; the improvement resulting purely from structure averaging. Negative

values are improvements.
100-fold less), there is also a clear limitation in implicit solvent

simulations, as pointed out in other studies (Fennel et al.,

2010). When the 40 target proteins are categorized based on

the importance of explicit waters, there are eight cases with

more than five buried water molecules hydrogen bonding to

the protein, 22 cases where there are few explicit water-pro-

tein hydrogen bonds, and ten cases where the water-protein

interactions are uncertain (due to nuclear magnetic resonance

[NMR] or low-resolution crystal structures). The DGDT-HA for

the 22 targets that do not have buried water-protein interac-

tions are comparable between the two methods, 2.1 to 2.4;

for the remaining 18 targets, the differences are dramatic,

0.8 to 3.1, for implicit and explicit solvent simulations,

respectively.

A common limitation of trajectory averaging, with methods

based on both implicit and explicit solvent, is in refinement of

the most incorrect regions, where dynamics or minimization

alone is insufficient to move the backbone into the native energy

attractor. Complementary to this approach are loop and termi-

nus backbone modeling methods (Park and Seok, 2012; Stein

and Kortemme, 2013). To highlight this complementarity, we

show an example combining both methods on a homology

model of CASP target TR723, with starting GDT-HA = 66.0 and

RMSD = 2.2 Å. Applying the approach from the previous section,

there is a GDT-HA improvement of 3.3 but no change in RMSD,

with improvements entirely in the core region. If we apply

RosettaCM (Song et al., 2013) to reconstruct the N terminus on

top of the model with refined core, we further improve GDT-HA

and RMSD by 4.6 and 0.4 Å, respectively. Achieving consistent

improvements in model quality through loop modeling will likely

require additional method development.

DISCUSSION

Our analysis of trajectory averaging at the individual residue level

suggests that the increase in success of refinement upon aver-

aging results from the superposition of two limiting effects. The

trajectories may be viewed as diffusive processes in very high

dimensional spaces; in one limit, the free energy landscape is
1126 Structure 23, 1123–1128, June 2, 2015 ª2015 Elsevier Ltd All ri
flat, and in the other, harmonic. In the first limit, which dominates

for residues that start out far from the native structure and free

energy minimum, averaging dampens the random (and hence

nonreinforcing) changes to the starting structure. In the second

limit, which holds for residues closer to the native structure

and free energy minimum, averaging better locates the position

of the harmonic minimum than any individual structure since it is

unlikely for the many structural degrees of freedom to all move in

the right direction in a single trajectory.

An alternative explanation of the improvement due to

ensemble averaging is that it better describes the ensemble of

structures present in a crystal during X-ray data collection. While

it is possible some of this improvement stems from this effect, it

is unlikely this is responsible for the majority of the improvement.

First, averaging yields improved results independent of the qual-

ity of the starting model, even when the starting model is quite

non-native and unlike the structures sampled in the crystal envi-

ronment. Second, successful refinement of targets whose native

structures are determined by NMR suggests that the result is not

crystal specific (and NMR measurements are a different type of

ensemble average).

The Anna Karenina principle is a generalization of the novel’s

opening sentence: ‘‘Happy families are all alike; every unhappy

family is unhappy in its own way.’’ In the context of the protein

refinement problem, ‘‘happy’’ residues near the native structure

experience forces in the direction of the native minimum and un-

dergo consistent motions, while ‘‘unhappy’’ residues far from the

native minimum experience diverse forces and undergo diverse

motions. This picture helps rationalize why iteratively reapplying

refinement approaches based on trajectory averaging does not

result in continued improvements. The large improvements in

structure quality come from the residues at intermediate dis-

tances from the native structure; once these become close to

native, further improvements in the structure require improve-

ments in the more divergent regions where the large fluctuations

are mostly canceled out by averaging. Improvements in model

quality beyond the first iteration will likely require improvements

in energy functions so that a larger fraction of residues feel a

strong force toward the native conformation.
ghts reserved
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Figure 3. Dependence of Per Residue

Changes During Refinement on Starting

RMSD to the Native Structure

(A)Dependenceofper residueDRMSD(seeFigure2

legend) on starting RMSD to the native structure.

The first and third quartiles are shown as error bars.

(B) The fraction of residues improved as a function

of the starting RMSD to the native structure.

(C and D) The distribution of per residue im-

provements (C) before and (D) after structural

averaging are shown as histograms. Black and

white columns correspond to restrained and un-

restrained simulations, respectively.
The physical basis for the Anna Karenina effect in structure

refinement is that native interactions must generally be stronger

and consistent (less frustrated) (Taketomi et al., 1975; Bryngel-

son et al., 1995) than non-native interactions for the folded state

to be a sufficiently deep energy minimum to overcome the large

entropic cost to folding. Fragments of structure close to this en-

ergy minimum experience consistent forces, while fragments of

structure far from the minimum experience less consistent and

more rapidly varying forces; hence in different trajectories there

is much more variation in the motions undergone in the latter

than in the former.

EXPERIMENTAL PROCEDURES

Dataset

For validation of the method, targets consisted of all refinement category tar-

gets from CASP8 to CASP10. Targets with a starting model with GDT-HA

below 40.0 were removed, as conservative refinement is likely limited in those

cases. In total, 40 targets were used. Parameter optimization was done on a

separate set composed of homology models from server predictions on other

CASP targets.

Rosetta CartesianRefiner: Improved Sampling Efficiency by a

Multimethod Approach

Here we describe the CartesianRefiner protocol developed for protein homol-

ogy model refinement implemented within Rosetta (Leaver-Fay et al., 2014).

The protocol beginswith a homologymodel and returns a single refinedmodel;

no additional information, e.g. template structure, known contacts, and so on,

is assumed. First, a given starting structure is distributed into multiple trajec-

tories on each of seven different methods utilizing either MD or MCM simula-

tions. Individual methods vary in their energy functions, initial structure prepa-

ration, and simulation parameters. In all methods, Ca atoms of all residues are

restrained through harmonic force at their starting positions with the restraint

strength of 1.0 REU (Rosetta energy unit)/mol. The four MDmethods are com-

binations of two energy functions and two variants on the side-chain initializa-

tion protocol. The energy functions are the standard Rosetta energy as well as

FACTS energy: standard Rosetta energy employs an effective solvation term

(Lazaridis and Karpuls, 1999) while FACTS energy describes the solvation ef-

fect by a Generalized Born/Surface Area (GB/SA) approach using the FACTS
Structure 23, 1123–1128, June 2, 2015 ª
model (Haberthur and Caflisch, 2008). Side chains

were initially optimized using the Rosetta packer

(Leaver-Fay et al., 2014) with either standard en-

ergy weights, or softened energy weights inspired

from other refinement methods (Heo et al., 2013)

where van der Waals interactions are dampened

to reduce the sensitivity to inaccurate initial back-

bone placement. For eachMDmethod, 12 replicas

of 20-ps simulations are performed from which

structures are collected every 1 ps. The tempera-
ture is set uniformly at 150 K, which roughly corresponds to room temperature

with Rosetta energy (Liu et al., 2012). The three MCM methods employed are:

Rosetta FastRelax (Tyka et al., 2011) with standard Rosetta energy in Cartesian

space and torsion space (Conway et al., 2014), and FastRelax in Cartesian

space with FACTS energy as described above. The FastRelax protocol con-

sists of several rounds of Monte Carlo side-chainmodeling and energy minimi-

zation while slowly ramping the weight of the repulsive part of the van der

Waals potential up and down to anneal the structure. Once sampling is

done, trajectories from three methods among seven are selected based on

their median statistical potential score (Zhou and Skolnick, 2011), followed

by sampling enrichment to double the ensemble structures. Finally, structural

averaging is carried out on the ensemble, combining the structures with lowest

50% statistical potential from each method.

There are two reasons for using different methods simultaneously. First, it

allows for diverse sampling within a short simulation time. As pointed out

above, diverse sampling is crucial for deriving sufficient statistics on residue

fluctuations. Second, it increases the probability of any sampled structure to

overcome energetic barriers. Energetic barriers may differ depending on the

startingmodel, thus, theymay bemore easily overcome by employing different

sampling techniques and energy functions. This is especially important, as

short simulations may not guarantee enough sampling.

The overall simulation time for a 200-residue target is about 30 CPU hours on

a 2.0 GHz Intel Xeon CPU. The simulation time scales linearly to the number of

protein residues. Our approach is in the order of hundreds of times faster

compared with explicit water simulations carried out by Mirjalili et al. using

the NAMD package (Phillips et al., 2005). Rosetta CartesianRefiner is freely

available to academic users as part of the Rosetta software suite. Details of

usage are provided in the Supplemental Information.

SUPPLEMENTAL INFORMATION

Supplemental Information includes Method Availability, Running Scripts, one

figure, and one table and can be found with this article online at http://dx.

doi.org/10.1016/j.str.2015.03.022.
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