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Abstract
Accurate energy functions are critical to macromolecular modeling and design. We
describe new tools for identifying inaccuracies in energy functions and guiding their
improvement, and illustrate the application of these tools to the improvement of the
Rosetta energy function. The feature analysis tool identifies discrepancies between struc-
tures deposited in the PDB and low-energy structures generated by Rosetta; these likely
arise from inaccuracies in the energy function. The optE tool optimizes the weights on the
different components of the energy function by maximizing the recapitulation of a wide
range of experimental observations. We use the tools to examine three proposed mod-
ifications to the Rosetta energy function: improving the unfolded state energy model
(reference energies), using bicubic spline interpolation to generate knowledge-based
torisonal potentials, and incorporating the recently developed Dunbrack 2010 rotamer
library (Shapovalov & Dunbrack, 2011).
1. INTRODUCTION

Scientific benchmarks are essential for the development and parame-
terization of molecular modeling energy functions. Widely used molecular

mechanics energy functions such as Amber and OPLS were originally

parameterized with experimental and quantum chemistry data from small

molecules and benchmarked against experimental observables such as inter-

molecular energies in the gas phase, solution phase densities, and heats of

vaporization (Jorgensen, Maxwell, & Tirado-Rives, 1996; Weiner et al.,

1984). More recently, thermodynamic measurements and high-resolution

structures of macromolecules have provided a valuable testing ground for

energy function development. Commonly used scientific tests include dis-

criminating the ground state conformation of a macromolecule from higher

energy conformations (Novotný, Bruccoleri, & Karplus, 1984; Park &

Levitt, 1996; Simons et al., 1999), and predicting amino acid sidechain con-

formations (Bower, Cohen, & Dunbrack, 1997; Jacobson, Kaminski,

Friesner, & Rapp, 2002) and free energy changes associated with protein
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mutations (Gilis & Rooman, 1997; Guerois, Nielsen, & Serrano, 2002;

Potapov, Cohen, & Schreiber, 2009).

Many studies have focused on optimizing an energy function for a par-

ticular problem in macromolecular modeling, for instance, the FoldX

energy function was empirically parameterized for predicting changes to

the free energy of a protein when it is mutated (Guerois et al., 2002). Often,

these types of energy functions are well suited only to the task they have been

trained for. Kellogg, Leaver-Fay, and Baker (2011) showed that an energy

function explicitly trained to predict energies of mutation did not produce

native-like sequences when redesigning proteins. For many projects, it is

advantageous to have a single energy function that can be used for diverse

modeling tasks. For example, protocols in the molecular modeling program

Rosetta for ligand docking (Meiler & Baker, 2003), protein design

(Kuhlman et al., 2003), and loop modeling (Wang, Bradley, & Baker,

2007) share a common energy function, which allowed Murphy, Bolduc,

Gallaher, Stoddard, and Baker (2009) to combine them to shift an enzyme’s

substrate specificity.

Sharing a single energy function between modeling applications presents

both opportunities and challenges. Researchers applying the energy func-

tion to new tasks sometimes uncover deficiencies in the energy function.

The opportunities are that correcting the deficiencies in the new tasks will

result in improvements in the older tasks—after all, nature uses only one

energy function. Sometimes, however, modifications to the energy function

that improve its performance at one task degrade its performance at others.

The challenges are then to discriminate beneficial from deleterious modifi-

cations and reconcile task-specific objectives.

To address these challenges, we have developed three tools based on

benchmarking Rosetta against macromolecular data. The first tool

(Section 3), a suite we call “feature analysis,” can be used to contrast ensembles

of structural details from structures in the PDB and from structures generated

by Rosetta. The second tool (Section 4), a program we call “optE,” relies on

fast, small-scale benchmarks to train the weights in the energy function. These

two tools can help identify and fix flaws in the energy function, facilitating the

process of integrating a proposed modification. We follow (Section 5) with a

curated set of large-scale benchmarks meant to provide sufficient coverage of

Rosetta’s applications. The use of these benchmarks will provide evidence

that a proposed energy function modification should be widely adopted.

To conclude (Section 6), we demonstrate our tools and benchmarks by eval-

uating three incremental modifications to the Rosetta energy function.
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Alongside this chapter, we have created an online appendix, which

documents usage of the tools, input files, instructions for running the bench-

marks, and current testing results: http://rosettatests.graylab.jhu.edu/

guided_energy_function_improvement.

2. ENERGY FUNCTION MODEL

The Rosetta energy function is a linear combination of terms that
model interactions between atoms, solvation effects, and torsion energies.

More specifically, Score12 (Rohl, Strauss, Misura, & Baker, 2004), the

default fullatom energy function in Rosetta, consists of a Lennard–Jones

term, an implicit solvation term (Lazaridis & Karplus, 1999), an

orientation-dependent H-bond term (Kortemme, Morozov, & Baker, 2003),

sidechain and backbone torsion potentials derived from the PDB, a short-

ranged knowledge-based electrostatic term, and reference energies for each

of the 20 amino acids that model the unfolded state. Formally, given amolec-

ular conformation, C, the total energy of the system is given by

E Cjw,Yð Þ¼
XTj j

j

wjTj CjYj

� � ½6:1�

where each energy term Tj has parameters Yj and weight wj. The feature

analysis tool is meant to aid the refinement of the parameters Y. The optE

tool is meant to fit the weights, w.

3. FEATURE ANALYSIS

We aim to facilitate the analysis of distributions of measurable prop-
erties of molecular conformations, which we call “feature analysis.” By for-

malizing the analysis process, we are able to create a suite of tools and

benchmarks that unify the collection, visualization, and comparison of fea-

ture distributions. After motivating our work, we describe the components

(Section 3.1) and illustrate how they can be integrated into a workflow

(Section 3.2) by investigating the distribution of the lengths of H-bonds with

hydroxyl donors.

Feature distributions, broadly construed, have long held a prominent role

in structuralbiochemistry.TheBoltzmannequation—relatingprobabilitywith

energy—has been used to justify creating knowledge-based potentials from

http://rosettatests.graylab.jhu.edu/guided_energy_function_improvement
http://rosettatests.graylab.jhu.edu/guided_energy_function_improvement
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distribution of features from crystal structures (Miyazawa & Jernigan, 1985;

Sippl, 1990); for example, rotamer libraries are often based on feature distri-

butions (Dunbrack & Karplus, 1993; Ponder & Richards, 1987). The

Boltzmann equation also motivates comparing feature distributions from

predicted structures against those observed in nature: for an energy function

to generate geometries that are rarely observed means the energy function is

wrongly assigning low energies to high-energy geometries. Many structure

validation tools, such as MolProbity (Chen et al., 2010), identify outlier

features as indications of errors in a structure.

The Rosetta community has also relied on feature analysis: for example,

the derivation of low-resolution (Simons et al., 1999) and high-resolution

(Kortemme et al., 2003) knowledge-based potentials, and the analysis of

core-packing quality (Sheffler & Baker, 2009) and surface hydrophobic pat-

ches (Jacak, Leaver-Fay, & Kuhlman, 2012). However, each feature analysis

foray has been ad hoc, limiting reuse and reproducibility. Our primary goal

was to create a unified framework for feature analysis.

Feature analysis also provides a means to tune the parameters of an energy

function. Recently, Song, Tyka, Leaver-Fay, Thompson, and Baker (2011)

observed peaks in the backbone ’, c distributions of Rosetta-generated

structures, absent in those of crystal structures, which they attributed to dou-

ble counting in knowledge-based potentials. In one case, a commonly

observed loop motif forms an H-bond between the asparagine sidechain

of residue i and the backbone of residue iþ2, constraining ci to 120�.
The proliferation of this motif caused an artifact in Rosetta’s knowledge-

based Ramachandran energy term, leading it to favor asparagines with a

c of 120� irrespective of H-bond formation. To correct this, they consid-

ered the Ramachandran term as a parametric model and tuned the param-

eters until the predicted asparagine c distribution matched the distribution

from crystal structures. Hamelryck et al. (2010) have also observed that

this tuning process is a useful way to improve an energy function. Our

second major goal for the feature analysis tool is to facilitate this process

of parameter tuning.
3.1. Feature analysis components
The feature analysis framework consists of two components: Feature

reporters take a batch of structures and populate a relational database with

feature data. Next, feature analysis scripts select, estimate, visualize, and

compare feature distributions from the database.
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3.1.1 Feature databases
To facilitate the analysis of a diversity of feature distributions, we have cre-

ated a relational database architecture for feature data. Typically, when

analyzing feature distributions, we decompose a basic feature distribution

(e.g., H-bond length) into many conditional feature distributions (e.g.,

H-bond length for carboxylate-guanidine residues in beta-sheets). By put-

ting basic features into a relational database along with other supporting data,

we can perform the expensive task of extracting features from some input

batch of structures once, while retaining the ability to examine arbitrary

conditional feature distributions in the future.

The database schema is a hierarchy with high-level tables holding the

batch of structures and low-level tables holding the basic features. For exam-

ple, the HBond feature reporter manages H-bond properties with foreign-

key references to the higher-level residues and structures tables (Fig. 6.1).

Each feature database holds features for a single batch of conformations.

Once a batch and relevant feature reporters (Table 6.1) have been selected,

the features are extracted to the database using the ReportToDB mover in the

RosettaScripts XML-based protocol language (Fleishman et al., 2011).

Feature extraction is robust in that it supports multiple database backends

(SQLite, PostgreSQL, and MySQL), and incremental extraction and merging.

See the online appendix for feature analysis tutorials and details about

implementing new FeatureReporters.

3.1.2 Distribution analysis
The second component of the feature analysis suite provides tools to query

feature databases, to transform features in order to correctly estimate feature

distributions, and to plot those distributions. Community-created feature

analysis scripts are released with Rosetta and may be found in the

rosetta/rosetta_tests/features directory.

To run a features analysis, the user provides a configuration file specifying

a set of feature databases (each extracted from a batch of structures), the anal-

ysis scripts to run, and the plot output formats. Each feature analysis script

typically consists of three parts: an SQL query to retrieve features from

the input databases, kernel density estimation (KDE) on the extracted fea-

tures (or transformed features), and the creation of a plot using the ggplot2

grammar-of-graphics package in R.

Feature analysis scripts begin by querying the input sample sources

using one or more SQL statements, ending with a SELECT statement. These

SQL queries can join multiple tables to compile arbitrarily complicated con-

ditional feature distributions. The resulting table has rows that represent



Batch Structures Residues

hbond_chem_typeshbond_siteshbonds

HBondFeatures

hbond_geom_coords hbond_site_atoms

hbond_site_pdbhbond_lennard_ jones

hbond_site_environment

Figure 6.1 HBondFeatures database schema. The HBondFeatures class populates
these tables with H-bond data. For each H-bond site (acceptor atom or polar hydrogen),
atomic coordinates, experimental data, and solvent environment are reported. For each
H-bond that forms between two H-bond sites, the geometric coordinates (i.e., distances
and angles) and the sum of the Lennard–Jones energies for H-bonding atoms are
reported.
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feature instances, where some of the columns identify the feature (including

which batch it came from along with other covariates), and the remaining

columns measure the feature in the feature space.

Once the features have been retrieved, density distributions can be com-

puted. To do this, a feature analysis script can use the split-apply-combine

strategy (Wickham, 2011): feature instances are grouped by their identifying

columns, and for each group, a KDE is computed over the measure col-

umns. When computing density estimations over feature spaces, care must

be taken to apply appropriate transformations to normalize the space and to

handle boundary conditions. Our framework provides support for common

transformations and kernel bandwith selection strategies, which control

smoothness of the estimated distribution. Once a collection of feature dis-

tributions have been estimated, they can be visualized through the dec-

laritive grammar-of-graphics method (Wickham, 2010; Wilkinson, 1999).

The scripting framework also provides support for other types of feature

analysis tasks. For example, the results from prediction benchmarks (e.g.,

fromRotamerRecovery) can be regressed against various feature types. Fea-

ture instances can also be aligned and exported to a PyMOL session for inter-

active inspection.



Table 6.1 Each FeatureReporter is responsible for extracting a particular structural feature from a structure and reporting it to a relational
database
Meta One body Two body Multibody

Protocol Residue Pair Structure

Batch ResidueConformation AtomAtomPair PoseConformation

JobData ProteinResidueConformation AtomInResidue–AtomInResiduePair RadiusOfGyration

PoseComments ProteinBackboneTorsionAngle SecondaryStructure

ResidueBurial ProteinBackbone–AtomAtomPair HydrophbicPatch

Experimental Data ResidueSecondaryStructure Cavity

PdbData GeometricSolvation HBond GraphMotif

PdbHeaderData BetaTurn Orbital SequenceMotif

DDG RotamerBoltzmannWeight SaltBridge Rigidity

NMR ResidueStrideSecondaryStructure LoopAnchor VoronoiPacking

DensityMap HelixCapping DFIREPair InterfaceAnalysis

MultiSequenceAlignment BondGeometry ChargeCharge

HomologyAlignment ResidueLazaridisKarplusSolvation Energy Function

ResidueGeneralizedBornSolvation Multistructure ScoreFunction

Chemical ResiduePoissonBoltzmannSolvation ProteinRMSD ScoreType

AtomType Pka ResidueRecovery StructureScores

ResidueType ResidueCentroids ResiduePairRecovery ResidueScores

ResidueClusterRecovery HBondParameters

Cluster hEnergyTermi Parameters

TheFeatureReporters that are currently implemented are in blackwhile someFeatureReporters thatwouldbe interesting to implement in the future are in gray.
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3.2. Feature analysis workflow
Feature analysis has three common stages: sample generation, feature extrac-

tion, and distribution comparison. Feature analysis can be used to optimize

the energy function parameters by iteratively modifying the energy function

and comparing feature distributions from structures generated with the new

energy function against those from crystal structures (Fig. 6.2).

For a demonstration, we consider the hydrogen-acceptor distance of

H-bonds with nonaromatic ring hydroxyl donors (i.e., serine or theonine).

In X-ray crystal structures of proteins, the most common distance for this

type of H-bond is 1.65 Å, which is �0.2 Å shorter than that for H-bonds
Proposed feature-based workflows

Crystal
 structures

Structure
predictions

Candidate
structures
predictions

Feature database

Extract
feature instances

Extract
feature instances

Estimate
distribution

Estimate
distribution

Compare
distributions

Scientific
benchmark

Adjust
prediction method

Figure 6.2 Example usage workflow for the feature analysis tool. Layer 1: Each batch
consists of a set of molecular conformations, for example, experimentally determined
or predicted conformations. Layer 2: Features from each batch are extracted into a rela-
tional database. Layer 3: Conditional feature distributions are estimated from feature
instances queried from the database. Layer 4: The distributions are compared graphi-
cally. Layer 5: The comparison results are used as scientific benchmarks or to inform
modifications to the structure prediction protocol and energy function, where the cycle
can begin again.
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involving amide donors. Rosetta does not correctly recapitulate the distance

distribution for hydroxyl donors, because previously to avoid the challenge

of inferring the hydroxyl hydrogen locations, the hydroxyl donor parame-

ters were taken from the sidechain amide and carboxylamide donor param-

eters (Kortemme et al., 2003).

To start, we compared structures generated fromRosetta’s existing energy

function against native structures to verify that Rosetta does not generate the

correct distribution of hydroxyl H-bond distances. We used as our reference

source a subset of the top8000 chains dataset (Keedy et al., 2012,

Richardson, Keedy, &Richardson, 2013) with a maximum sequence identity

of 70%, which gave 6563 chains. Hydrogen atom coordinates were optimized

using Reduce (Word, Lovell, Richardson, & Richardson, 1999). We further

restricted our investigation to residues with B-factors less than 30. Then, for

each candidate energy function, we relaxed each protein chain with the

FastRelax protocol in Rosetta (Khatib et al., 2011).

The analysis script has three parts: First, for each batch, the lengths of all H-

bonds with serine or theonine donors to protein-backbone acceptors are

extracted with an SQL query. Second, for the instances associated with each

batch, a one-dimensional KDE is constructed normalizing for equal volume

per unit length. Also, for each nonreference sample source, the Boltzmann dis-

tribution for the length term in theH-bondenergy term is computed.Third, the

density distributions are plotted. This script is available in the online appendix.

With this distribution analysis script in place, we evaluated two incre-

mental modifications to the standard Score12H-bond term. The first, NewHB,

adjusts parameters for the length term for these H-bond interactions so that

the optimal length is consistent with the peak in the native distribution

(panel A in Fig. 6.3). This shifts the distribution of predicted H-bonds

toward shorter interactions. However, the predicted distribution does not

move far enough to recapitulate the observed distribution (panels B to C

in Fig. 6.3). In Score12, the Lennard–Jones energy term between the donor

and acceptor oxygen atoms is optimal at 3 Å. However, the peak in the

OdO distance distribution is at 2.6 Å (see the online appendix). Thus

H-bonds with the most favorable distance according to the NewHB parame-

trization experience strong repulsion from the Lennard–Jones term. To

reduce correlation between the H-bond and the Lennard–Jones energy

terms, we decreased the optimal distance for the Lennard–Jones term for

these specific interactions to 2.6 Å. With this second modification, Rosetta

recapitulates the native distribution (panel D in Fig. 6.3).
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Figure 6.3 H-bond length distributions for hydroxyl donors (SER/THR) to backbone
oyxgens. The thick curves are kernel density estimations from observed data normalized
for equal volume per unit distance. The black curve in the background of each panel
represents the Native sample source. (A) Boltzmann distribution for the length term
in the Rosetta H-bond model with the Score12 and NewHB parameterizations.
(B) Relaxed Natives with the Score12 energy function. The excessive peakiness is due
to a discontinuity in the Score12 parametrization of the H-bond model. (C) Relaxed
Natives with the NewHB energy function. (D) Relaxed Natives with the NewHB energy
function and the Lennard–Jones minima between the acceptor and hydroxyl heavy
atoms adjusted from 3.0 to 2.6 Å, and between the acceptor and the hydrogen atoms
adjusted from 1.95 to 1.75 Å.
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4. MAXIMUM LIKELIHOOD PARAMETER ESTIMATION
WITH optE
Recall that the Rosetta energy function is a weighted linear combina-

tion of energy terms that capture different aspects of molecular structure, as

defined in Eq. (6.1). The weights, w, balance the contribution of each term

to give the overall energy. Because the weights often need adjusting after

modifying an energy term, we have developed a tool called “optE” to facil-

itate fitting them against scientific benchmarks. The benchmarks are small,

tractable tests of Rosetta’s ability to recapitulate experimental observations
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given a particular assignment of weights. Although the weight sets that optE

generates have not proven to be good replacements for the existing weights

in Rosetta, we have found optE useful at two tasks: identifying problems in

the Rosetta energy function and fitting the 20 amino-acid-reference-energy

weights.

In the next section, we give a formula for generic likelihood-based loss

functions and then describe the scientific benchmarks that are available in

optE.

4.1. Loss function models
To jointly optimize an energy function’s performance at the scientific

benchmarks, we require success at each benchmark to be reported as a single

number, which is called the loss. For scientific benchmarks based on reca-

pitulating experimental observations, a commonmethod of defining the loss

is, given the weights, the negative log probability of predicting the observed

data. If the observed data are assumed to be independently sampled, the loss

is the sum of the negative log-probability over all observations. Thinking of

the loss as a function of the weights for a fixed set of observations, it is called

the negative log-likelihood of the weights. An ideal prediction protocol will

generate predictions according to the Boltzmann distribution for the energy

function.1 Therefore, the probability of an observation o is

p ojwð Þ¼ e�E ojwð Þ=kT=Z wð Þ ½6:2�
Z wð Þ¼

X
a2 A[of g

e�E ajwð Þ=kT ½6:3�

where the partition function,Z(w), includes o and all possible alternatives,A.

Because of the vast size of conformation space, computing Z is often intrac-

table; this is a common problem for energy-based loss functions (LeCun &

Jie, 2005). To address this problem, we rely on loss functions that do not

consider all possible alternatives.

4.1.1 Recovering native sequences
Within the Rosetta community, we have observed that improvements to

the energy function, independently conceived to fix a particular aspect of

Rosetta’s behavior, have produced improvements in sequence recovery

when redesigning naturally occurring proteins (Kuhlman & Baker, 2000;
1 This assumption needs to be checked, for example, by comparing the distribution of structural features

against the Boltzmann distributions defined by the energy function.
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Morozov & Kortemme, 2005). Therefore, we attempt to increase sequence

recovery to improve the energy function.

The standard sequence-recovery benchmark (described in Section 5.2)

looks at the fraction of the amino acids recovered after performing complete

protein redesign using Rosetta’s Monte Carlo optimization technique. To

turn this benchmark into a loss function like Eq. (6.2) would require us to

compute the exact solution to the NP-Complete sidechain optimization

problem (Pierce &Winfree, 2002) for the numerator, and, for an N residue

protein, to repeat that computation 20N times for each possible sequence for

the denominator. This is not feasible.

Instead, we approached the benchmark as a one-at-a-time optimization,

maximizing the probability of the native amino acid at a single position given

some fixed context. This introduces a split between the energy function

whose weights are being modified to fit the native amino acid into a particular

environment and the energy function which is holding that environment

together. Upweighting one term may help distinguish the native amino acid

from the others, but it might also cause the rest of the environment to relax

into some alternate conformation in which the native amino acid is no longer

optimal. To build consistency between the two energy functions, we devel-

oped an iterative protocol (additional details given in Section 4.2.1) that oscil-

lates between loss-function optimization and full-protein redesign. Briefly,

the protocol consists of a pair of nested loops. In the outer loop, the loss func-

tion is optimized to produce a set of candidate weights. In the inner loop, the

candidate weights are mixed in various proportions with the weights from the

previous iteration through the outer loop, and for each set of mixed weights,

complete protein redesign is performed. The redesigned structures from the

last iteration through the inner loop are then used to define new loss functions

for the next iteration through the outer loop.

We define the loss function for a single residue by the log-likelihood of

the native amino acid defined by a Boltzmann distribution of possible amino

acids at that position. We call this the pNatAA loss function.

pNatAA wð Þ¼ e�E natjwð Þ=kTX
aa

e�E aajwð Þ=kT ½6:4�

LpNatRot
wð Þ¼� lnpNatAA wð Þ ½6:5�

where E(nat|w) is the energy of the best rotamer for the native amino acid

and E(aa|w) is the energy of the best rotamer for amino acid aa. Rotamers



122 Andrew Leaver-Fay et al.
are sampled from Roland Dunbrack’s backbone-dependent rotamer library

from 2002 (Dunbrack, 2002), with extra samples taken at�s for both w1 and
w2. The energies for the rotamers at a particular position are computed in the

context of a fixed surrounding. The contexts for the outer-loop iteration i

are the designed structures from iteration i�1; the first round’s context

comes from the initial crystal structures.

4.1.2 Recovering native rotamers
As is the case for the full-fledged sequence-recovery benchmark, the

rotamer-recovery benchmark (described in Section 5.1) would be intracta-

bly expressed as a generic log-likelihood loss function as given in Eq. (6.2).

Instead, we again approach the recovery test as a one-at-a-time benchmark

to maximize the probability of the native rotamer at a particular position

when considering all other rotamer assignments.

For residue j, the probability of the native rotamer is given by

pNatRot wð Þ¼ e�E natjwð Þ=kTX
i2rots

e�E ijwð Þ=kT ½6:6�

where E(nat|w) is the energy of the native rotamer, and the set rots contains

all other rotamers built at residue j. We define a loss function, LpNatRot, for

residue j as the negative log of this probability.

4.1.3 Decoy discrimination
Benchmarking the ability of Rosetta to correctly predict protein structures

from their sequences is an incredibly expensive task. In the high-resolution

refinement benchmark (described in Section 5.4), nonnative structures,

decoys, are generated using the energy function being tested so that each

decoy and each near-native structure will lie at a local minimum, but this

takes�20 K CPU hours. Within optE, we instead test the ability of Rosetta

to discriminate near-native structures from decoys looking only at static

structures; as optE changes the weights, the property that each structure lies

at a local minimum is lost.

Given a setN of relaxed, near-native structures for a protein, and a setD

of relaxed decoy structures, we approximate the probability of the native

structure for that protein as

pNatStruct wð Þ¼ 1P
jnj

X
j2N

e�snjEj wð Þ=kT=Z wð Þ ½6:7�
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Z wð Þ¼
X
j2D

e
� sEj wð Þ=kTð Þ�dj R lna�

P
k
dkð ÞÞ �

X
j2N

e�sEj wð Þ=kT ½6:8�

and similarly define a decoy-discrimination loss function,LpNatStruct, as theneg-

ative log of this probability. Here, nj is the “nativeness” of conformation j,

which is 1 if j is below1.5 ÅCaRootMeanSquaredDeviation (RMSD) from

the crystal structure and 0 if it is above 2 Å RMSD. The nativeness decreases

linearly from 1 to 0 in the range between 1.5 and 2. Similarly, dj is the “dec-

oyness” of conformation j,which is 0 if j is below 4 ÅRMSD and 1 otherwise.

s is a dynamic-range-normalization factor that prevents the widening of an

energy gap between the natives and the decoys by scaling all of the weights;

it is defined ass¼s(D,w)/s0wheres(D,w) is the computed standarddeviation

for the decoy energies for a particular assignment of weights and s0 is the stan-
dard deviation of the decoy energies measured at the start of the simulation.

In the partition function, the R ln a�P
kdk term approximates the

entropy of the decoys, an aspect that is otherwise neglected in a partition

function that does not include all possible decoy conformations. This term

attempts to add shadow decoys to the partition function, and the number of

extra decoys added scales exponentially with the length of the chain, R. We

chose 1.5 as the scale factor, a, which is relatively small given the number of

degrees of freedom (DOFs) each residue adds. Counting torsions alone,

there are between three (glycine) and seven (arginine) extra DOFs per res-

idue. Our choice of a small a is meant to reflect the rarity of low-energy

conformations. To normalize between runs which contain differing num-

bers of far-from-native decoys, we added the �P
kdk term; doubling the

number of decoys between two runs should not cause the partition function

to double in value.
4.1.4 DDG of mutation
The full benchmark for predicting DDGs of mutation (described in

Section 5.3) is computationally expensive, and so, similar to the decoy-

discrimination loss function, we define a DDG loss function which relies

on static structures. This loss function is given by:

LDDG wð Þ¼ DDGexp� minmut2mutsE mutjwð Þ�minwt2wtsE wtjwð Þð Þ2�
½6:9�

where muts is a set of structures for the mutant sequence, wts is a set of struc-

tures for the wild-type sequence, and the experimentally observed DDG is
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defined such that it is positive if the mutation is destabilizing and negative if it

is stabilizing. Note that this loss function is convex if there is only one struc-

ture each in the muts and wts sets. This is very similar to the linear least-

squares fitting, except that it is limited to a slope of one and a y-intercept

of zero. The slope can be fit by introducing a scaling parameter to weight

optimization, as described in Section 4.2.2 below.
4.2. Loss function optimization
OptE uses a combination of a particle swarm minimizer (Chen, Liu, Huang,

Hwang, & Ho, 2007) and gradient-based minimization to optimize the loss

function. Nonconvexity of the loss function prevents perfect optimization,

and independent runs sometimes result in divergent weight sets that have

similar loss function values. In spite of this problem, optE tends to converge

on very similar weight sets (for an example, see the online appendix).
4.2.1 Iterative protocol
As described above, training with the pNatAA loss function effectively splits

the energy function into two which we attempt to merge with an iterative

procedure where we oscillate between loss-function optimization in an

outer loop and complete protein redesign in an inner loop. Between rounds

of the outer loop, the weights fluctuate significantly, and so, in each iteration

of the inner loop, we create a weight set that is a linear combination of the

weights resulting from round i’s loss-function optimization and the weight

set selected at the end of round i�1. The weight set used for design during

outer-loop iteration i, inner-loop iteration j is given by

w i; jð Þ¼ awl ið Þþ 1�að Þw i�1ð Þ ½6:10�

a¼ 1

iþ j
½6:11�

where wl(i) is the weight set generated by minimizing the loss function in

round i, and w(i�1) is the final weight set from round i�1. In the first

round, w(6.1) is simply assigned wl(1). This inner loop is exited if the

sequence-recovery rate improves over the previous round or if six iterations

through this loop are completed. The weight set w(i,j) for the last iteration

through the inner loop taken as the weight set w(i) for round i and is written

to disk. The set of designed structures from this iteration are taken to serve as

the context for the pNatAA loss function in the next round.
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4.2.2 Extra capabilities
OptEprovides extra capabilities useful forexploringweight space.For instance,

it is possible toweigh the contributions of the various loss functions differently.

Typically, we upweight the decoy-discrimination loss function by 100 when

optimizing it along with the pNatAA and pNatRot loss functions. We typically

train with�100 native-set/decoy-set pairs, compared to several thousand res-

idues from which we can define pNatAA and pNatRot loss functions.

Upweighting the pNatStruct loss function prevents it from being drowned out.

OptE also offers the ability to fit two or more terms with the same

weight, or to obey an arithmetic relationship as specified in an input text file

(see the online appendix). This feature was used to scale the Score12 terms by

a linear factor but otherwise keep them fixed to optimize the DDG of the

mutation loss function (Kellogg et al., 2011). Finally, OptE allows the def-

inition of restraints for the weights themselves to help hold them to values

the user finds reasonable. This is often useful because the loss functions often

prefer negative weights.
4.3. Energy function deficiencies uncovered by OptE
OptE is particularly good at two tasks: refitting reference energies (described

in Section 4.5) and uncovering areas where the existing Rosetta energy

function falls short. Rosetta’s efficiency in searching through conformation

space means it often finds decoys with lower energies than the native. Such

decoys surely point to flaws in Rosetta’s energy function, however, it is not

always easy to see why the natives are not at lower energy than these decoys.

OptE allows efficient hypothesis-driven testing: hypothesize what kind of

term is absent from the Rosetta energy function, implement that term,

and test that term in optE using the pNatStruct loss function. If the value of

the loss function improves after the new term is added, that is strong evi-

dence the term would improve the energy function. There are caveats:

because the pNatStruct loss function relies on Rosetta-relaxed native struc-

tures, some of the features present in the crystal structures might have already

been erased before optE gets started, and optE might fail to identify terms

that would improve the energy function.

Using optE,we found two terms that improved the decoy-discrimination

loss function over Score12. The first was a carbon-H-bond potential added to

Rosetta (butnot includedas part ofScore12) tomodelRNA(Das,Karanicolas,

& Baker, 2010). This potential was derived from a set of protein crystal struc-

tures and a set of decoy protein structures as the log of the difference in the
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probability of an oxygen being observed at a particular distance in crystal

structures versus Rosetta-generated structures. OptE identified this term as

strongly improving decoy discrimination. We followed this lead by splitting

the potential into backbone/backbone, backbone/sidechain, and sidechain/

sidechain contributions. Here, optE preferred to set the weight on the

sidechain/sidechain and backbone/sidechain components to zero while

keeping the weight on the backbone/backbone interactions high. This left

exactly one interaction: the Ha hydrogen interacting with the carbonyl

oxygen.This contact is observedprincipally inb-sheets andhas been reported
previously as giving evidence for a carbonH-bond (Fabiola, Krishnaswarmy,

Nagarajan, & Pattabhi, 1997; Taylor & Kennard, 1982).

The original CH-bond potential proved to be a poor addition to the

energy function:when used to generate new structures or to relax natives, pre-

viously observed deep minima at lowRMSD (<1.5 Å) from the crystal struc-

turewere lost andwere instead replaced by broad, flat, near-nativeminima that

reached out as far as 4 Å. To improve the potential, Song et al. (2011) itera-

tively adjusted the parameters to minimize the difference between the

observed and predicted structures. This iterative process resulted in better

HadO distance distributions; unexpectedly, it also resulted in better distance

distributions for other atom-pairs in b-sheets.
A second term identified by optE was a simple Coulombic electrostatic

potential with a distance-dependent dielectric (Yanover & Bradley, 2011).

After an initial signal from optE suggested the importance of this term, we

again separated the term into backbone/backbone, backbone/sidechain, and

sidechain/sidechain components. Again, the backbone/backbone portion

showed the strongest signal. From there, we separated each term into attrac-

tive and repulsive components, and optE suggested that the repulsive back-

bone/backbone interaction contributed the most toward improved decoy

discrimination. OptE also identified which low-energy decoys in the train-

ing set were problematic in the absence of the electrostatic term. By hand,

we determined that the loops in these decoys contained extremely close

contacts between backbone carbonyl oxygens: they were only 3.4 Å apart,

which is closer than is commonly observed in crystal structures.
4.4. Limitations
Though our original goal was to fit all the weights simultaneously, optE has

not proven exceptionally useful at that task. There are a number of factors

that contribute to optE’s failures here. For one, the loss function that we use
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is not convex, and therefore its optimization cannot be guaranteed. This

sometimes leads to a divergence of the weight sets in independent trajecto-

ries, which makes interpreting the results somewhat tricky.

The biggest problem facing optE, however, is its inability to see all of the

conformation space. This is true for all of the loss functions we try to opti-

mize, but the pNatStruct loss function, in particular, can see only the decoys

we give it, and typically we cannot computationally afford to give optEmore

than a few hundred decoys per protein. Thus, a weight set optE generates

may reflect artifacts of our decoy selection. For example, optE typically tries

to assign a negative weight to the Ramachandran term (described briefly in

Section 6.2), suggesting that this term is overoptimized in our decoys com-

pared to native structures; optE finds that the easiest way to discriminate

natives from decoys is turning the weight negative. In general, the weights

that optE produces are not good for protein modeling (see the online appen-

dix for benchmark results for an optE-generated weight set). However,

using the protocol described in the next section, optE is fantastic at refitting

reference energies.

4.5. A sequence-profile recovery protocol for fitting reference
energies

Dissatisfyingly, the pNatAA loss function produced weight sets that over-

designed the common amino acids (e.g., leucine) and underdesigned the rare

amino acids (e.g., tryptophan). To address this shortcoming, we created an

alternative protocol within optE for fitting only the amino acid reference

energies, keeping all other weights fixed. This protocol does not use any

of the loss functions described above; instead, it adjusts the reference energies

directly based on the results of complete protein redesign.

The protocol iteratively performs complete protein redesign on a set of

input protein structures and adjusts the reference energies upwards for amino

acids it over designs and downwards for those it under designs, where the

target frequencies are taken from the input set. After each round, optE com-

putes both the sequence-recovery rate and the Kullback–Leibler (KL) diver-

gence of the designed sequence profile against the observed sequence

profile, given by�P
aaln(paa/qaa), where paa is the naturally occurring fre-

quency of amino acid aa in the test set and qaa is the frequency of amino acid

aa in the redesigned structures. The final reference energies chosen are those

that maximize the sum�0.1 KL-divergenceþ seq. rec. rate. This protocol is

used to refit reference energies after each of the three energy function

changes described in Section 6.
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The training set we use, which we call the “HiQ54,” is a new collection

of 54 nonredundant, monomeric proteins from the PDB through 2010 that

have 60–200 residues (avg.¼134) and no tightly bound or large ligands. All

were required to have both resolution and MolProbity score (Chen et al.,

2010) at or below 1.4, very few bond length or angle outliers, and deposited

structure-factor data. The HiQ54 set is available in the online appendix and

at http://kinemage.biochem.duke.edu/.

5. LARGE-SCALE BENCHMARKS

Scientific benchmarking allows energy function comparison. The tests
mostpertinent to theRosetta communityoftenaimtoward recapitulatingobser-

vations from crystal structures. In this section, we describe a curated set of pre-

viouslypublishedbenchmarks,which togetherprovideacomprehensiveviewof

an energy function’s strengths and weaknesses. We continually test the bench-

marks on the RosettaTests server to allow us to immediately detect changes to

Rosetta that degrades its overall performance (Lyskov & Gray, 2012).

5.1. Rotamer recovery
One of the most direct tests for an energy function is its ability to correctly

identify the observed rotamers in a crystal structure against all other possible

rotamers while keeping the backbone fixed. Variants of the rotamer recovery

test have long been used to evaluate molecular structure energy functions

(Liang&Grishin, 2002; Petrella, Lazaridis, &Karplus, 1998), including exten-

sive use to evaluate the Rosetta energy function (Dantas et al., 2007; Dobson,

Dantas, Baker, & Varani, 2006; Jacak et al., 2012; Kortemme et al., 2003), the

ORBIT energy function (Sharabi, Yanover, Dekel, & Shifman, 2010), and

the SCWRL energy function (Shapovalov & Dunbrack, 2011).

Here, we test rotamer recovery in four tests combining two bifurcated

approaches to the task: discrete versus continuous rotamer sampling and

one-at-a-time versus full-protein rotamer optimization. The discrete,

one-at-a-time rotamer optimization protocol is called rotamer trials. It builds

rotamers, calculates their energies in the native context, and compares the

lowest-energy rotamer against the observed crystal rotamer. The continu-

ous, one-at-a-time rotamer optimization protocol is called rt-min (Wang,

Schueler-Furman, & Baker, 2005). It similarly builds rotamers in the native

context but minimizes each rotamer before comparing the lowest-energy

rotamer against the crystal rotamer. The discrete, full-protein optimization

protocol is called pack rotamers. This builds rotamers for all positions and then

http://kinemage.biochem.duke.edu/
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seeks to find the lowest-energy assignment of rotamers to the structure using

aMonte Carlo with simulated annealing protocol (Kuhlman & Baker, 2000)

where at a random position, a random rotamer is substituted into the current

environment, its energy is calculated, and the substitution is accepted or

rejected based on the Boltzmann criterion. The rotamers in the final assign-

ment are compared against the crystal rotamers. The continuous, full-

protein rotamer optimization task is called min pack. It is similar to the pack

rotamers protocol except that each rotamer is minimized before the

Boltzmann decision. A similar protocol has been described before (Ding

& Dokholyan, 2006).

Recovery rates aremeasuredona setof 152 structures, eachhavingbetween

50 and 200 residues and a resolution less than 1.2 Å. Rotamers are considered

recovered if all their w dihedrals are less than 20� from the crystal w dihedrals,

taking into account symmetry for the terminal dihedrals in PHE, TYR,

ASP,andGLU.For thediscreteoptimization tests, rotamers arebuilt at thecen-

terof the rotamerwells,withextra samples includedat�si from�wi forw1 andw2.
For the continuous optimization test, samples are only taken at�wi but canmove

away from the starting conformation through minimization.
5.2. Sequence recovery
In the sequence-recovery benchmark, we perform complete-protein fixed-

backbone redesigns on a set of crystal structures, looking to recapitulate the

native amino acid at each position. For this chapter, we used the test set of

38 large proteins from Ding and Dokholyan (2006). Sequence recovery was

performed with the discrete, full-protein rotamer-and-sequence optimization

protocol called PackRotamers, described above. Rotamer samples were taken

from the given rotamer library (either the 2002 or the 2010 library), and extra

samples were chosen at�si for w1 and w2. The multi-cool annealer-simulated

annealing protocol (Leaver-Fay, Jacak, Stranges, & Kuhlman, 2011) was

employed insteadofRosetta’s standard simulated annealingprotocol.Wemea-

sured the sequence-recovery rateand theKL-divergenceof thedesignedamino

acid profile from the native amino acid profile: the sequence-recovery rate

should be high, and the KL-divergence should be low.
5.3. DDG prediction
The DDG benchmark consists of running the high-resolution protocol

described in Kellogg et al. (2011), on a curated set of 1210 point mutations

for which crystal structures of the wild-type protein are available. The
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protocol predicts a change in stability induced by the mutation by compar-

ing the Rosetta energy for the wild-type and mutant sequences after apply-

ing the same relaxation protocol to each of them. The Pearson correlation

coefficient of the measured versus predicted DDGs is used to assess Rosetta’s

performance.
5.4. High-resolution protein refinement
Rosetta’s protocol to predict protein structures from their sequence

alone runs in two phases: a low-resolution phase (ab initio) relying on

fragment insertion (Simons, Kooperberg, Huang, & Baker, 1997) to sea-

rch through a relatively smooth energy landscape (Simons et al., 1999),

and a high-resolution phase (relax) employing sidechain optimization

and gradient-based minimization. This abrelax protocol offers the

greatest ability to broadly sample conformation space in an attempt to

find nonnative conformations that Rosetta prefers to near-native

conformations.

Unfortunately, the abrelax protocol requires significantly more sampling

than could be readily performed to benchmark a change to the energy func-

tion. The problem is that most low-resolution structures produced by the

first ab initio phase do not yield low-energy structures in the second relax

phase, so finding low-energy decoy conformations requires hundreds of

thousands of trajectories. To reduce the required amount of sampling,

Tyka et al. (2010) curated four sets of low-resolution decoys for 114 proteins

by taking the low-resolution structures that generated low-energy structures

after being put through high-resolution refinement. The benchmark is then

to perform high-resolution refinement on these low-resolution structures

with the new energy function. Each of the low-resolution sets was generated

from different sets of fragments; some sets included fragments from homo-

logs, while others included fragments from the crystal structure of the pro-

tein itself. This gave a spectrum of structures at varying distances from native

structures.

These sets are used as input to the relax protocol. The decoy energies

and their RMSDs from the crystal structure are used to assess the ability of

Rosetta to discriminate natives from low-energy decoys. This is reported

in two metrics by the benchmark: the number of proteins for which the

probability of the native structure given by the Boltzmann distribution

exceeds 80% (pNat¼exp(E(nat))/(exp(E(nat))þSexp(E(d))) with E(nat)

representing the best energy of any structure under 2 Å RMSD from
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the crystal structure, and d representing any structure greater than 2 Å

RMSD. pNat should not be confused with the pNatStruct loss function in

optE, and the number of proteins for which the lowest-energy near-native

conformation has a lower energy than the lowest-energy decoy conforma-

tion. For the benchmarks reported here, we relaxed 6000 decoys randomly

sampled with replacement from each of the four sets, resulting in 24,000

decoys per protein. The statistical significance of the difference between

two runs can be assessed with a paired t-test, comparing pNat for each

of the 114 targets.

The proteins included in this test set include many where the crystal

structure of the native includes artifacts (e.g., loop rearrangements to form

crystal contacts), where the protein coordinates metal ions or ligands, or

where the protein forms an obligate multimer in solution. For this reason,

perfect performance at this benchmark is not expected, and interpreting the

results is somewhat complicated; an improvement in the benchmark is easier

to interpret than a degradation.
5.5. Loop prediction
The loop-prediction benchmark aims to test Rosetta’s accuracy at de novo

protein loop reconstruction. For this, we used the kinematic closure

(KIC) protocol, which samples mechanically accessible conformations of

a given loop by analytically determining six dihedral angles while sampling

the remaining loop torsions probabilistically from Ramachandran space

(Mandell, Coutsias, & Kortemme, 2009).

We used the benchmark set of 45 12-residue loops as described in

Mandell et al. (2009). For each loop, we generated 8000 structures and cal-

culated their Ca loop RMSD to the native.

In some cases, KIC generates multiple clusters of low-energy conforma-

tions of which one cluster is close to the native structure, while the other(s)

can be several Ångstroms away. Because the Rosetta energy function does

not robustly distinguish between these multiple clusters, we considered not

just a single structure, but the five lowest-energy structures produced. Of

these five, we used the lowest-RMSD structure when calculating bench-

mark performance. Overall loop reconstruction accuracy is taken as the

median Ca loop RMSD of all best structures across the entire 45-loop

dataset. The first and third quartile, though of lesser importance than the

median, should be examined as well, as they offer a picture of the rest of

the distribution.
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6. THREE PROPOSED CHANGES TO THE ROSETTA
ENERGY FUNCTION
In this final section, we describe three changes to Rosetta’s energy

function. After describing each change and its rationale, we present the

results of the benchmarks described above.

6.1. Score120

We used the sequence-profile-recovery protocol in optE to fit the reference

energies for Score12 to generate a new energy function that we called

Score120. Refitting the Score12 reference energies in Rosetta3 (Leaver-

Fay, Tyka, et al., 2011) was necessary because the components of Score12

in Rosetta3 differed in several ways from those in Rosetta2. First, in

Rosetta2, there was a disagreement between the energy function used dur-

ing sequence optimization and the one used throughout the rest of Rosetta.

In the sequence optimization module (“the packer”), the knowledge-based

Ramachandran potential was disabled, and the weight on the P(aa|’, c)
was doubled from 0.32 to 0.64. In Rosetta3, there is no schism between

the energy functions used in the packer and elsewhere. Second, the

Lennard–Jones and implicit solvation (Lazaridis & Karplus, 1999) terms

were extended from 5.5 to 6 Å and spline-smoothed to be zero and flat

at 6 Å. Previously, they ramped linearly from 5 to 5.5 Å, causing disconti-

nuities in the derivatives, which—when combined with gradient-based

minimization—created peaks in atom-pair radial distributions (W. Sheffler

& D. Baker, unpublished observations). Also, the Lennard–Jones potential

now starts counting the contribution of the repulsive component at the bot-

tom of the well, instead of at the x-intercept. This change eliminates a deriv-

ative discontinuity at the x-intercept that forms if the attractive and repulsive

weights differ (as they do in Score12). Third, in Rosetta2, interactions were

inappropriately omitted because for certain types of residue pairs, the

Cb–Cb interaction threshold was too short.

Table 6.2 gives the sequence-recovery rates for Rosetta2 and Rosetta3

using Score12 and using reference weights trained with the pNatAA loss func-

tion (Rosetta3-pNatAA) and with the sequence-profile recovery protocol

(Rosetta3-sc120). Though the pNatAA objective function achieves satisfactory

sequence-recovery rates, it overdesigns leucine and lysine and never designs

tryptophan. Score120, on the other hand, does an excellent job recapitulating
the sequence profile in the testing set while also outperforming theRosetta3-



Table 6.2 Sequence recovery rates (% Rec.), KL-divergence of the designed sequence profiles from the native sequence profile (KL-div.), and
amino acid profiles measured on the Ding & Dokholyan-38 set

% Rec. KL-div. A C D E F G H I K L M N P Q G S T V W Y

Test set – – 8.9 1.2 6.6 6.7 4.3 8.3 2.2 5.2 6.3 7.9 2.4 4.5 4.5 3.4 4.7 5.2 5.7 6.8 1.5 3.6

Rosetta2-sc12 38.0 0.019 6.3 1.2 6.2 6.3 5.5 7.6 1.9 6.3 5.2 10.3 1.9 4.1 6.0 4.2 5.3 5.2 5.0 5.6 2.0 3.9

Rosetta3-sc12 32.6 0.141 6.4 0.0 7.7 8.7 5.4 7.4 6.3 4.7 6.8 8.8 1.7 3.2 1.3 3.5 6.3 7.2 4.2 4.2 2.5 4.0

Rosetta3-

pNatAA

36.7 0.391 9.8 0.0 6.4 6.2 0.7 8.3 0.8 5.7 11.8 13.5 0.2 2.7 7.6 0.2 3.1 4.7 6.3 10.6 0.0 1.5

Rosetta3-sc120 37.0 0.008 8.4 0.7 6.6 7.5 3.9 8.2 2.1 5.0 6.4 8.0 2.2 3.5 3.7 3.3 6.1 6.4 5.8 6.4 1.8 4.1

The Rosetta3-sc12 energy function represents the Score12 reference energies taken directly from Rosetta2. The Rosetta3-pNatAA weight set keeps the same weights as
Score12, except that the reference energies were fit by optimizing the pNatAA loss function; the Rosetta3-sc120 (Score120) reference energies were generated using the
sequence-profile optimization protocol.
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pNatAA energy function at sequence recovery. The rotamer-recovery, high-

resolution refinement, and loop-prediction benchmarkswere not run for this

proposed change to the energy function as fixed-sequence tasks are unaffected

by changes to the reference energies.
6.2. Interpolating knowledge-based potentials with
bicubic splines

Three knowledge-based potentials in Rosetta are defined on the f,c map:

the Ramachandran term which gives Erama(f,c|aa)¼� lnp(f,c|aa), the
p_aa_pp term (sometimes called the design term) which gives an energy from

the log of the probability of observing a particular amino acid at a givenf,c,
and the rotamer term (almost always called the Dunbrack term, or fa_dun),

which gives Edun(w|f,c, aa). These terms use bins on the f,c map to col-

lect the data that define these potentials and use bilinear interpolation

between the bins to define a continuous function.

The p_aa_pp term in Score12 is given by

Epaapp aajf,cð Þ¼�ln
p aajf,cð Þ
p aað Þ : ½6:12�

For any particular f and c, the energy is given as the negative log of the

bilinearly interpolated p(aa|f,c) divided by p(aa). The Ramachandran term

similarly defines the energy for the off-grid-point f and c values as the neg-

ative log of the bilinearly interpolated p(f,c|aa). Both the p_aa_pp and the

Ramachandran term place their bin centers every 10� starting from 5�.
The Dunbrack term in Score12 is given by

Edun wjf,c,aað Þ¼�ln p rotjf,c,aað Þð Þ
þ
X
i

wi��wi f,cjaa,rotð Þ
si f,cjaa,rotð Þ

� �2

½6:13�

where the rotamer bin, rot, which gives the probability of the rotamer,

p(rot|f,c, aa), is computed from the assigned w dihedrals, and both

�wi f,cjaa,rotð Þ andsi(f,c|aa, rot) are themeasuredmeanwvalues and standard
deviations for the rotamer. This effectively models the probability for the

sidechain conformation as the product of the rotamer probability and several

(height-unnormalized) Gaussians. The 2002 library gives the p(rot|f,c, aa),
�wi f,cjaa,rotð Þ, and si(f,c|aa,rot) every 10�. Given a particular assignment

of f and c, the values for p(rot|f,c, aa), �wi f,cjaa,rotð Þ, and si(f,c|aa,
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rot) are bilinearly interpolated from the four surrounding bin centers. The

Dunbrack term divides the f,c plane into 10� bins, starting from 0�.
Bilinear interpolation leaves derivative discontinuities every 5� in the

f,c plane. These discontinuities frustrate the minimizer causing pileups

at the bin boundaries. Looking at the f,c distribution for nonhelical

residues, the grid boundaries are unmistakable (Fig. 6.4B). Indeed, Score12

predicts 23% of all f,c pairs of lying within 0.05� of a grid boundary.

We propose to fix this problem by using bicubic splines to interpolate

between the grid points. We fit bicubic splines with periodic boundary con-

ditions for both theRamachandran and p_aa_pp terms on the energies, inter-

polating in energy space. For the Dunbrack energy, we fit bicubic splines for

the �ln(p(rot|f,c, aa)) portion, but, to avoid increasing our memory foot-

print too much, continued to use bilinear interpolation for the w-mean

and w-standard deviations. We refit the reference energies using the
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Figure 6.4 Backbone torsion angles in the beta-region with B-factors less than 30.
(A) The distribution for the top 8000; counts in upper right. (B) In Score12, density accu-
mulates on the 5� bins due to derivative discontinuities caused by bilinear interpolation.
(C) Score12Bicubic has only a few remaining artifacts on the 10� bin boundaries due to
the continued use of bilinear interpolation for parts of the Dunbrack energy.
(D) Score12Dun10 has very few remaining artifacts.
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sequence-profile recovery protocol to create a new energy function that, for

this chapter, we refer to as Score12Bicubic; Fig. 6.4C shows that bicubic-

spline interpolation dramatically reduces the pileups. Accumulation on

the 10�-grid boundaries starting at 5� produced by the Ramachandran

and p_aa_pp terms is completely gone.Modest accumulation on the 10�-grid
boundaries starting at 0� persists because bicubic splines were not used to

interpolate the w-mean and w-standard deviations.
6.3. Replacing the 2002 rotamer library with the extended
2010 rotamer library

In 2010, Shapovalov and Dunbrack (Shapovalov & Dunbrack, 2011)

defined a new rotamer library that differs significantly from the 2002 library

in the way the terminal w is handled for eight amino acids: ASP, ASN, GLU,

GLN, HIS, PHE, TYR, and TRP. Because these terminal w dihedrals are

about bonds between sp3-hybridized atoms and sp2-hybridized atoms, there

are no well-defined staggered conformations. Instead of modeling the prob-

ability landscape for the terminal w within a particular bin as a Guassian, the

new library instead provides a continuous probability distribution over all

the bins. This last w is in effect nonrotameric, though the rest of the w in

the sidechain are still rotameric; these eight amino acids can be called semi-

rotameric. In the 2002 library, there were discontinuities in both the energy

function and the derivatives when crossing over these grid boundaries. Once

a rotamer boundary is crossed, an entirely different set of �w and si are used to
evaluate the rotamer energy. Further, Rosetta’s treatment of the terminal w
probability distributions as Gaussians means that Rosetta structures display

Gaussian distributions (the gray lines in Fig. 6.5) that do not resemble the

native distributions (the black lines in Fig. 6.5).

With the 2010 library, the energy for a rotameric residue is computed in

the same way as for the 2002 library, and the energy for one of the semi-

rotameric amino acids is computed as

Edun wjf,c,aað Þ¼�ln p rotjf,c,aað Þp wT jrot,f,c,aað Þð Þ
X
i<T

wi��wi
si

� �2

½6:14�
whereT denotes the terminal w, andwhere �wi f,cjaa,rotð Þ and si(f,c|aa,rot)
from Eq. (6.13) have been abbreviated as �wi and si, though they retain their

dependence on the rotamer and amino acid and are a function off andc. The
2010 library provides data for p(wT|rot,f,c, aa) every 10� for f and c, and
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every 5� or every 10� for wT depending onwhether the amino acid, aa, is sym-

metric about wT. We fit tricubic splines to interpolate �ln(p(rot|f,c, aa)
p(wT|rot,f,c, aa)) in f,c and wT. As in the 2002 library, �wi and si are inter-
polated bilinearly from the four surrounding grid points. We refit the refer-

ence energies using the sequence-profile recovery protocol to create a new

energy function that, for this chapter, we refer to as Score12Dun10.

Score12Dun10 builds on top of Score12Bicubic.
6.4. Benchmark results
The results of the benchmarks, given in Table 6.3, show that Score120 is a
clear improvement over Score12, substantially improving sequence recovery,

and that Score12Bicubic is a clear improvement over Score120, behaving as well
as Score120 on most benchmarks and giving a slight, but statistically insignif-

icant improvement at the high-resolution refinement benchmark (p¼0.07).
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Score12Dun10 shows mixed results: at the rotamer-recovery benchmarks, it

shows a clear improvement over Score12Bicubic; the improvement can be

most clearly seen in the rotamer-recovery rates for the semirotameric amino

acids (Table 6.4).

Score12Dun10 performed worse at the high-resolution refinement bench-

mark than Score12Bicubic. The two principal metrics for this benchmark are

slightly worse: the number of proteins where the lowest energy near-native

structure has a lower energy than the lowest energy decoy (#(eNat<eDec);

104 vs. 105), and the number of proteins where the probability of the native

structure calculated by the Boltzmann distribution is greater than 80%

(#(pNat>0.8); 67 vs. 60). To estimate the significance of these results, we

compared the distribution of (pNatsc12Dun10–pNatsc12Bicubic) for each of the

114 targets against the null hypothesis that this distribution had a mean of 0,

using a two-tailed t-test. This gave a p-value for the difference of 0.01. Because

this benchmark includes proteins whose accurate prediction is unlikely given

protocol limitations (disulfides are not predicted), and crystal artifacts (loops

which adopt conformations supported only by crystal contacts), its results are

more difficult to interpret. We therefore restricted our focus to 29 proteins

in the setwhich are absentof these issues (these are listed in theonline appendix)

and repeated the comparison of (pNatsc12Dun10–pNatsc12Bicubic). Here too,

Score12Dun10 showed a statistically significant degradation relative to

Score12Bicubic, with a p-value of 0.04. The mean difference of the pNat

statistic for this subset (0.06) was similar to the mean difference over the

entire set (0.05).

For the DDG benchmark, the differences between the four tested energy

functions were very slight. Score120’s performance was somewhat degraded

relative to Score12, though this should be weighed against the dramatic

improvement Score120 showed at sequence recovery. The other two energy

functions performed in the same range as Score120.
At the loop-modeling benchmark, the differences between the three

methods were slight. To estimate the significance of the differences, we took

100bootstrap samplesandmeasured thethreeRMSDquartiles.Thedifferences

in median RMSDs between Score12 and Score12Bicubic (p<0.74),

and Score12Bicubic and Score12Dun10 (p<0.11) were not statistically signifi-

cant. However, the third quartile improved for both Score12Bicubic and

Score12Dun10. In two cases (see the online appendix), KIC simulations using

Score12Dun10 correctly identified near-native structures by their lowest

energy, whereas the Score12 simulations did not.



Table 6.3 Benchmark results for score12 and for th ree proposed energy function modifications

Energy
function

Rotamer recovery benchmark
q. rec.
nch

DDG
bench High-res. refinement benchmark

Loop-modeling
benchmark

Pack
rots
(%)

Min
pack
(%)

Rot.
trials
(%)

Rt-
min
(%) c.

KL-
div.

R-
value

#
(pNat>0.8) SpNat

#
(eNat<eDec)

First
quart.
(Å)

Med.
(Å)

Third
quart.
(Å)

Score12 66.19 69.07 71.49 73.12 .6 0.019 0.69 67 74.6 104 0.468 0.637 1.839

Score120 – – – – .0 0.008 0.67 – – – – –

Score12Bicubic 66.24 67.51 71.52 73.15 .6 0.010 0.68 68 77.9 105 0.499 0.644 1.636

Score12Dun10 67.82 70.50 72.60 74.23 .6 0.009 0.67 60 72.0 104 0.461 0.677 1.463

Score12 0 differs from Score12 only in its reference energies, whic ve no effect on rotamer-recovery, high-resolution refinement, or loopmodeling, and so data for these
benchmarks are not given.

Table 6.4 Percentage rotamer recovery by amino a
R K M I L S T V N D Q E H W F Y

Score12 24.7 31.1 51.3 84.0 86 71.8 92.9 94.4 55.2 59.2 21.8 28.5 51.8 78.7 84.5 79.9

Score12Bicubic 25.7 31.8 51.1 85.2 86 71.5 92.9 94.4 54.8 58.7 20.5 28.7 52.0 80.1 83.3 79.9

Score12Dun10 26.7 31.7 49.6 85.4 87 72.5 92.6 94.3 56.8 60.4 30.7 33.6 55.0 85.0 85.4 82.9

Rotameric amino acids are listed on the left; semirotameric a o acids on the right.
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It isnot immediatelyclearwhythe2010rotamer librarycauses adegradation

inRosetta’s ability todiscriminatenative structures fromdecoys.Apossible rea-

son for thismight be pointed to in the distribution of off-center w angles. Struc-
tures refinedwith thenew libraryhavew-anglesmore tightlydistributed around

the reported �wi. The 2010 library, which was generated using more stringent

data filters than the 2002 library, reports smaller standard deviations on average:

for example, the mean s1 for leucine for rotamers in all f,c bins with proba-

bility>5% is 10.8� (with amedian of 13.9�) in the 2002 library, but is down to
7.9� (with a median of 7.2�) in the 2010 library. (For all leucine rotamers, the

2002 library reports a 13.1� mean, and a 9.9� median; the 2010 library reports a

9.2�mean, and a 9.9� median.) Bydecreasing theweight on the fa_dun termor

by merely weakening the “off-rotamer penalty” (the
P

i w��w=sð Þ2 compo-

nent of Eq. 6.14), the distributions may broaden and performance at the

high-resolution refinement benchmark might improve. Encouragingly,

decreasing the fa_dun weight down to one-half of its Score12 weight does

not substantially worsen rotamer recovery for the 2010 library (see the online

appendix).There is still significantwork, however, beforewe are ready to con-

clude that the new library should be adopted for general use in Rosetta.

7. CONCLUSION

Wehave described three tools that can be used to evaluate and improve
macromolecular energy functions. Inaccuracies in the energy function can be

identified by comparing features from crystal structures and computationally

generated structures. New or reparameterized energy terms can be rapidly

tested with optE to determine if the change improves structure prediction

and sequence design. When a new term is ready to be rigorously tested,

we can test for unintended changes to feature distributions by relying upon

the existing set of feature analysis scripts, refit reference energies for protein

design using the sequence-profile recovery protocol in optE, andmeasure the

impact of the new term on awide array of modeling problems by running the

benchmarks curated here. Of the three changes we benchmarked in this

paper, we recommend that the first two should be adopted. In the context

of Rosetta, this means using Score12Bicubic rather than the current Score12.
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