
proteins
STRUCTURE O FUNCTION O BIOINFORMATICS

WeFold: A coopetition for protein
structure prediction
George A. Khoury,1 Adam Liwo,2 Firas Khatib,3,15 Hongyi Zhou,4 Gaurav Chopra,5,6

Jaume Bacardit,7 Leandro O. Bortot,8 Rodrigo A. Faccioli,9 Xin Deng,10 Yi He,11

Pawel Krupa,2,11 Jilong Li,10 Magdalena A. Mozolewska,2,11 Adam K. Sieradzan,2

James Smadbeck,1 Tomasz Wirecki,2,11 Seth Cooper,12 Jeff Flatten,12 Kefan Xu,12

David Baker,3 Jianlin Cheng,10 Alexandre C. B. Delbem,9 Christodoulos A. Floudas,1

Chen Keasar,13 Michael Levitt,5 Zoran Popović,12 Harold A. Scheraga,11 Jeffrey Skolnick,4
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ABSTRACT

The protein structure prediction problem continues to elude scientists. Despite the introduction of many methods, only
modest gains were made over the last decade for certain classes of prediction targets. To address this challenge, a social-
media based worldwide collaborative effort, named WeFold, was undertaken by 13 labs. During the collaboration, the labo-
ratories were simultaneously competing with each other. Here, we present the first attempt at “coopetition” in scientific
research applied to the protein structure prediction and refinement problems. The coopetition was possible by allowing the
participating labs to contribute different components of their protein structure prediction pipelines and create new hybrid
pipelines that they tested during CASP10. This manuscript describes both successes and areas needing improvement as iden-
tified throughout the first WeFold experiment and discusses the efforts that are underway to advance this initiative. A foot-
print of all contributions and structures are publicly accessible at http://www.wefold.org.

Proteins 2014; 82:1850–1868.
VC 2014 Wiley Periodicals, Inc.

Key words: coopetition; protein structure prediction; CASP; structure refinement; Foldit.

Additional supporting information may be found in the online version of this article

Author Contributions: SNC conceived the project. GAK, AL, FK, HZ, GC, LOB,

SNC, RAF, XD, JF, YH, PK, JL, MAM, AS, JS, TW, KX, CK, and FP performed the

research. GAK, CAF, AL, FK, HZ, GC, and SNC analyzed the data. AL, DB, JB, JC,

ACBD, CAF, CK, ML, ZP, JS, HS, and SNC supervised the research. GAK, SNC,

AL, FK, HZ, LOB, RAF, MAM, and GC wrote the paper. The corresponding lab

members participated in the branches by contributing their published methods and

CPU time to the collaboration. All authors have read and approved the paper.

*Correspondence to: Silvia N. Crivelli; Department of Computer Science, Univer-

sity of California, Davis, 1 Shields Avenue, Davis, CA 95616.

E-mail: SNCrivelli@ucdavis.edu or SNCrivelli@lbl.gov

Received 23 August 2013; Revised 25 January 2014; Accepted 8 February 2014

Published online 15 February 2014 in Wiley Online Library (wileyonlinelibrary.

com). DOI: 10.1002/prot.24538

1850 PROTEINS VVC 2014 WILEY PERIODICALS, INC.

http://www.wefold.org


INTRODUCTION

The complexity of current scientific research requires

broad and open collaboration among researchers.

Recently, the scope of these collaborations has expanded

significantly to include individuals with no expertise in

the specific field, known as citizen scientists. A notewor-

thy example of this approach uses computer games to

engage participants. Launched in May 2008, Foldit is the

first computer game designed to harness the natural

human ability to recognize the 3D shape of proteins.

More than 300,000 people have participated to date pro-

ducing significant results.1 These projects illustrate a

shift in how scientists collaborate, as well as in the rela-

tionship between science and society.

A different sociological approach to tackle science is

CASP2 (Critical Assessment of techniques for Protein

Structure Prediction). Started in 1994 by Moult et al.3,

CASP is a community wide, worldwide experiment to

assess and advance the protein structure prediction field

by helping identify where efforts should be directed.4

CASP, which recently completed its 10th experiment,5

has challenged computational scientists to accurately and

consistently predict protein structures using only the

sequence of amino acids of soon to be or newly experi-

mentally determined but unpublished structures. More

recently, it has introduced other categories such as refine-

ment6–8 that challenges participants to improve the

accuracy of a given protein model by submitting five

new models.

During the CASP season, which occurs every other

summer, each participating group applies a series of meth-

ods (some publicly shared, others secretly guarded) to the

prediction pipeline and submits models for more than

100 different protein sequences or targets. After the

experiment is over, the true experimental structures are

published, the submitted models are examined by inde-

pendent assessors, and the results are discussed in a subse-

quent meeting. Consecutive editions of CASP have shown

substantial improvements in the category of “easy” pro-

teins where high sequence similarity to known proteins in

the Protein Data Bank exists and such information is used

to predict protein structures.4,9,10 However, no single

group has yet been able to consistently predict the struc-

ture of “hard” proteins with even moderate accuracy.

Reviews on structure prediction in protein folding include

those by Zhang,11 Dill and MacCallum,12 Khoury

et al.,13 and Floudas.14 CASP was not designed as a com-

petition and participants are encouraged to focus on new

ways of addressing the problem. However, although not

intended, this ranking induces an atmosphere that is

inherently competitive.15 Because of the success of CASP,

similar experiments were started.16–19 CASP remains the

most-participated one among these to date with 95 man-

ual prediction groups and 122 prediction servers submit-

ting models in CASP10.2

An approach that has not been tried in a scientific

context until recently is “coopetition,” which refers to

cooperative competition. Coopetition is a common busi-

ness practice. Companies sometimes engage their com-

petitors in their product development process. Their goal

is to create products of higher quality/extended function-

ality than the original products, resulting in an increased

competitive advantage. The WeFold experiment is the

first attempt at using coopetition, both open collabora-

tion and competition among research scientists and citi-

zen scientists, by generating methods that combine

elements of the participating teams. WeFold took place

during the CASP105 experiment with the goal of shaking

up the field of protein structure prediction. It brought

together thirteen labs worldwide (see Supporting Infor-

mation Table S1), ranging from purely bioinformatics to

physics-based approaches that, for the first time, collabo-

rated and competed in search for methodologies that are

better than their individual parts. The size of the collabo-

ration was unprecedented in the history of CASP, with

participants contributing a superset of almost 8.8 million

structures to WeFold from which a small fraction were

submitted to CASP10.5 This paper describes the WeFold

experiment. It analyzes the performance of the combined

methods with respect to their base methods in the con-

text of blind structure predictions during CASP10,5

describes the challenges faced, and reports those which

still remain. The lessons learned from this experiment

could be useful to other coopetition efforts that may

be attempted in the context of other CASP-like

competitions.

MATERIALS AND METHODS

A unique aspect of the WeFold experiment is that

the mechanism for the collaboration was largely

unknown until the CASP105 experiment started. There-

fore, on the first day of CASP10,5 WeFold participants

logged into the WeFold gateway to discuss how to best

combine the different components they were contribut-

ing to the project. Five branches resulted from that dis-

cussion. Their names and group numbers in CASP105

are: wfFUIK (149), wfFUGT (260), wfCPUNK (287),

WeFold Branch (101), and WeFoldMix (441). The first

three branches were named based on the first letter of

their component methods. wfCPUNK and WeFold

Branch were applied to the prediction of human terti-

ary structure prediction targets whereas wfFUIK,

wfFUGT, and WeFoldMix applied to both human terti-

ary structure prediction and refinement targets. Neither

branch competed as a server. There were 46 human tar-

gets (53 total, of which 7 were cancelled) and 27 refine-

ment targets (28 total, of which 1 was cancelled).

Figure 1 illustrates the organization of the different

branches. Please refer to Supporting Information for a

description of the science gateway.
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The wfFUIK branch

This branch starts with a set of structures produced by

Foldit20 players and then applies a selection process

based on state-of-the-art computational methods. It was

applied to the prediction of 15 human and 23 refinement

CASP105 targets, which are all of the targets attempted

by Foldit. Team members from the contributing labs

adapted their methods to work within the context of this

branch. For example, some methods that were originally

designed to operate on smaller datasets had to be modi-

fied to work on the large sets of Foldit-generated struc-

tures. Other methods had to be adapted to handle

systems containing structural symmetry as these systems

were attempted by Foldit.

Figure 1
Visual depiction of the five WeFold branches collaboratively formed and tested during CASP10. wfFUIK and wfFUGT both began with structures
generated by human players in the online multiplayer game Foldit. Foldit allows players to fold proteins independently on their home computers,

as well as share their predictions with other players around the world. Foldit players are also able to fold structures by hand using the XBOX Kinect

(http://www.fold.it/portal/node/993534) as well as with the Leap Motion (http://www.fold.it/portal/node/995117). These generated structures were
subsequently clustered, scored, and refined. wfCPUNK is an ab initio branch combining secondary structure prediction, beta-sheet topology predic-

tion, contact prediction, coarse-grained replica-exchange molecular dynamics, and clustering. WeFold Branch and WeFold Mix began with the
structures generated by the other branches and/or from servers participating in CASP10.

G. A. Khoury et al.

1852 PROTEINS

http://www.fold.it/portal/node/993534
http://www.fold.it/portal/node/995117


Supporting Information Figure S1 represents the com-

bined methodology. (A) Foldit20 players generate an

ensemble of protein models on the order of 105 models

per target. (B) Structural filtering is performed to elimi-

nate very similar structures (RMSD � cutoff), those

with unrealistic solvent accessible surface areas21 (SASA),

and those lacking secondary structure elements. This

yields an enriched set consisting of 103–104 structures,

called the unique/filtered set. (C) The iterative traveling

salesman based clustering algorithm, ICON22 is used to

select less than 100 models representing the entire con-

formational space, and the lowest energy structures based

on the Rosetta23 and dDFIRE24 energy functions are

added to that set. (D) These models are refined using a

knowledge-based potential followed by stereo-chemical

correction implemented in the KoBaMIN25–27 server.

(E) Finally, GOAP,28 Rosetta,23 dDFIRE,24 and

APOLLO,29 are used to rank the models, leading to a

consensus.

The wfFUGT branch

Like wfFUIK, this branch starts with a set of models

produced by Foldit then deviates from wfFUIK from step

(C) on. It was applied to the prediction of 13 out of the

15 human targets attempted by Foldit and 17 out of the

21 refinement targets attempted by Foldit in CASP10.5

The replica exchange Monte Carlo simulations that are

part of this branch’s pipeline (described below) were

computationally expensive and for some targets the gen-

eration of Foldit models, followed by the filtering step

did not allow for enough time for this pipeline to com-

plete. The wfFUGT branch tests combining sampling by

Foldit players with filtering algorithms, model selection

by the knowledge-based potential GOAP, and the

TASSER30,31 refinement protocol. Starting from the

Unique/Filtered structures, GOAP28 selects the top 30

models from the enriched set. TASSER32 next refines the

selected models. TASSER is primarily developed for

refining template models built upon PDB structures

found by threading methods. Here, it is applied to

Foldit-generated structures. First, it extracts distance and

contact restraints based on consensus conformations of

the 30 selected structures. Then, it starts from the 30

structures and moves them to satisfy the distance and

contact restraints using replica exchange Monte Carlo

simulation33 in a Ca representation. Low energy trajec-

tories are outputted at fixed step intervals. At the end of

the simulation, these trajectories are clustered using

SPICKER.34 Submitted models are the top cluster cent-

roids with rebuilt main-chain and side-chain atoms.

The wfCPUNK branch

This branch is an ab initio/free modeling branch that

combines secondary structure, beta sheet topology, and

contact predictions with the sampling capabilities of

coarse-grained replica-exchange molecular dynamics, when

templates are unavailable. It was applied to the prediction

of 21 small to moderately-sized targets due to the extreme

computational cost involved. Of those 21 targets, only 4

belonged in the free modeling category. First, coarse-

grained simulations with the UNRES force field35–39

(http://www.unres.pl) are employed to carry out Multi-

plexed Replica Exchange Molecular Dynamics

(MREMD).40 Dihedral-angle and distance restraints are

imposed on the virtual-bond dihedral angles between the

consecutive a-carbon (Ca) atoms and virtual side-chain

distances. The restraints are obtained using a consensus-

based method, CONCORD41 for secondary-structure pre-

diction, a novel optimization-based approach, BeST,42 for

beta-sheet topology prediction, and a physics-based

method of inter-residue contact prediction.43,44

For each protein, 64 MREMD trajectories are run at

32 different temperatures (2 trajectories per tempera-

ture). The last 12,800 snapshots (200 snapshots per tra-

jectory), where each snapshot is saved every 20,000

conformations, are taken for further analysis, which is

carried out by using the weighted-histogram analysis

method (WHAM).45 This method is used to calculate

the relative probability of each conformation from the

last portion of the MREMD38 simulation and to calcu-

late the heat-capacity curve and other thermodynamic

and ensemble-averaged properties. Then, the conforma-

tions are clustered at the selected temperature, which is

equal to Tm 10 K, where Tm is the position of the major

heat-capacity peak. Five clusters with lowest free energies

are chosen as prediction candidates. The conformations

closest to the respective average structures corresponding

to the found clusters are converted to all-atom struc-

tures46,47 and their energy is minimized using the

KoBaMIN server.27

The WeFold branch

This branch was applied to the prediction of 43 human

CASP105 targets. It starts with all models from all CASP

servers and WeFold methods and assesses them using the

APOLLO model quality assessment prediction method.

APOLLO29 first filters out illegal characters and chain-

break characters in the models predicted for a target.

Next, it performs a full pairwise comparison between

these models by calculating GDT_TS scores between a

model and all other models using the TM-Score48 pro-

gram. The mean pairwise GDT_TS between a model and

all other models is used as the predicted GDT_TS of the

model. Subsequently, TASSER32 is employed to refine the

top 30 selected models. First, TASSER extracts distance

and contact restraints based on consensus conformations

of the 30 selected structures. Then, it starts from the 30

structures and moves them to satisfy the distance and

contact restraints using replica-exchange Monte Carlo

WeFold Protein Structure Prediction Coopetition
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simulations33 in a Ca representation. Low energy trajec-

tories are output at fixed step intervals. At the end of sim-

ulation, these trajectories are clustered using SPICKER.34

Models selected for submission were the top cluster cent-

roids with rebuilt main-chain and side-chain atoms.

The WeFoldMix branch

This branch was created by a new group that did not

participate in CASP105 by itself, and was applied only to

the prediction of 5 human and 1 refinement CASP105 tar-

gets due to the extreme cost of performing replica-

exchange molecular dynamics simulations and paralleliza-

tion inefficiencies due to low atom/processor ratios when

using implicit solvent. It starts with a small set of high-

quality models collaboratively generated and ranked. Each

model is energy minimized using the steepest descent

method.49 Initially, no constraints are applied to the pro-

tein; in the second step all covalent bonds are constrained

with the LINCS algorithm.50 Simulations are performed

using GROMACS 4.5.549 with the AMBER99SB-ILDN51

forcefield and the GBSA52 implicit solvent model.

Replica-exchange molecular dynamics (REMD) is

employed to overcome the conformational trapping of the

structures in local potential energy minima by diffusion in

temperature space. A total of eight simultaneous simula-

tions (replicas) are performed in the temperature range of

298–473 K and are allowed to exchange each 5 ps accord-

ing to the Metropolis criterion.53 The observed average

exchange probability was 0.2.

After 1–3 ns of REMD, the 298 K-trajectory portion

reaches convergence and is used for cluster analysis using

a single linkage algorithm. Each cluster centroid is sub-

mitted to the previously described two-step energy mini-

mization process and each minimized cluster centroid is

ranked based on several structural and energetic metrics.

These metrics include potential energy, number of intra-

protein hydrogen bonds, and SASA. The structures with

the best consensus metrics are submitted.

Selection strategy employed by the four
Foldit-based teams during CASP10

Here we describe the selection process used by the

FOLDIT team, as well as the three teams associated with

it. This serves to explain the different performance of the

wfFUIK and wfFUGT teams compared to FOLDIT.

Quality and ranking of Foldit models by the FOLDIT

team is determined by the Rosetta full-atom energy.23

For each CASP target, the lowest Rosetta energy Foldit

prediction for each individual Foldit player is kept, in an

attempt to select a conformationally diverse set of FOL-

DIT submissions out of the top-ranked Foldit predic-

tions. Since Foldit allows players to form teams for

cooperative gameplay—and share solutions with team-

mates—the top-ranked predictions were often very simi-

lar to one another for players on the same team. This

was generally not the case when comparing the top pre-

diction across different teams (or players who are not

part of any team), therefore the selection strategy during

CASP105 for the FOLDIT team was to examine the low-

est Rosetta energy Foldit prediction generated by each

individual team (players without a team were considered

their own team). The five CASP submissions for the

FOLDIT team were selected by manually inspecting these

representative solutions from each team, and selecting a

conformationally diverse set of predictions by visual

inspection. This was the same selection strategy used for

FOLDIT submissions during CASP9.54

Before the start of CASP10,5 three Foldit-based teams

(Anthropic Dreams, Contenders, and Void Crushers)

requested the ability to select and submit their own

CASP submissions from a pool of their own team’s solu-

tions. Each of these three teams was provided with two

top-ranked predictions for each of the players on their

Foldit team: the lowest Rosetta energy solution each

player generated on their own, and the lowest energy

solution that player worked on by sharing with the rest

of their team. As Foldit does not allow different teams to

share solutions with one another, these three CASP105

teams were completely independent from one another,

and also independent of the submissions by FOLDIT.

Metrics used in analysis

The global distance test total score (GDT_TS55 is

approximately the percentage of residues that are located

in the correct position.12 It has become a standard eval-

uation measure in CASP56 for determining the accuracy

of a structure, preferred over the common root-mean

squared deviation (RMSD) metric. GDT_HA57 is a finer

metric, which uses tighter Ca distance cutoffs.

GDT_TS and GDT_HA are calculated using the TM-

Score48 program. Both of these metrics can be presented

on a zero to one basis or alternatively as a percentage.

The higher the value is, the more similar the prediction

is to the true structure. GDT_TS is used throughout this

paper except for when we refer to the refinement asses-

sors as they used GDT_HA.

RESULTS

The 13 labs participating in the WeFold initiative were

arranged into 5 branches, each representing 5 independ-

ent protein structure prediction methods that combine

different components from their contributing group.

Three of the branches produced one remarkable result

each and two of these results were featured by the asses-

sors in the refinement6 and free modeling58 categories.

However, none of them produced consistently good

results. In this section, we discuss the strengths and

potential of these branches, as well as their weaknesses.

G. A. Khoury et al.
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We also discuss the strengths and weaknesses of the

WeFold experiment as a whole. Our assessments are

based on the CASP official results and assessments avail-

able at http://www.predictioncenter.org/CASP10.

What went right in the collaborative protein
folding pipelines

The wfCPUNK branch

The wfCPUNK branch aimed to address free modeling

targets. These targets are among the hardest with poor to

no sequence identity in the “twilight zone”59 and thus

lack a determinable structural template. Of the four free

modeling targets attempted by wfCPUNK, it achieved its

best performance for target T0740_D1, yielding a high-

scoring model according to the cumulative plot of a-

carbon accuracy as shown in Figure 2. This result is

attributed to the ab initio contacts predicted as part of

the pipeline, which were used in wfCPUNK and not used

by the other methods undergoing UNRES sampling (i.e.,

Cornell-Gdansk and KIAS-Gdansk). In fact, the helix–

helix contact predictions43,44 that were contributed by

the FLOUDAS group and used as restraints in the

UNRES simulations made a difference in the sampled

space. Figure 3 shows the predicted contacts superposed

on the experimental structure, the best model (Model 4)

from the wfCPUNK group, and the best model from the

Cornell-Gdansk group (Model 3). It can be seen that the

restraints made the C-terminal a-helix bent and packed

against one of the middle a-helices. Unlike the experi-

mental structure, this a-helix is straight in the Cornell-

Gdansk Model 3.

The most accurate prediction for this target according

to GDT_TS was 38.87 and it was produced by RaptorX-

Roll. The GDT_TS of the wfCPUNK prediction was

32.10. However, from Figure 2, it can be seen that the

percent of residues within a distance cutoff line for the

wfCPUNK Model 4 clearly extends to the right beyond

that for any other model, albeit this happens only after

the 5 Å distance threshold. This feature arises from the

middle resolution of the UNRES force field, which repro-

duces well the overall topology of protein folds and

supersecondary structure/domain packing but does not

reproduce finer details of protein folds. It should be

noted that the same feature of GDT_TS plots was

observed for UNRES-predicted structures of T0668 and

T0684-D2.60 For another target, T0663, the UNRES pre-

diction was not among those top ones as far as the

GDT_TS plots were concerned; however, UNRES was

one of the only two approaches that predicted the cor-

rect topology of domain packing and this prediction was,

therefore, featured by the CASP assessors.

Table I presents the GDT_TS values for the predictions

by wfCPUNK and its component methods, as well as other

groups using the component methods. wfCPUNK was able

to outperform both the Cornell-Gdansk and KIAS-Gdansk

teams in three of four targets, and FLOUDAS in two out

of four targets. These results, although not statistically

Figure 2
wfCPUNK (black lines) outperformed all individual components and
all other groups and methods for Free Modeling target T0740_D1. The

model produced by wfCPUNK is shown in the inset with a rainbow
color, aligned with the native shown in black. The average prediction

among all groups for this target had a GDT_TS of 21.68 6 4.55. Inter-
estingly, the individual groups contributing to the method also outper-

form the average in a statistically significant fashion, with the combined

method outperforming the individual methods. This figure was adapted
from a GDT_TS plot generated on the CASP10 website, with permis-

sion.2 [Color figure can be viewed in the online issue, which is avail-
able at wileyonlinelibrary.com.]

Figure 3
Illustration of the ab initio predicted helix-helix contacts43,44 imple-

mented as restraints in UNRES sampling superposed on the experimen-
tal structure of T0740. The restraints are superposed on the

experimental structure (a), the best model (Model 4) from the
wfCPUNK group (b), and the best model (Model 3) from the Cornell-

Gdansk group (c). The restrained parts of the molecule that belong to

the same sets of restraints are marked with the same color, from blue
to red from the N- to the C-terminus. It can be seen that the restraints

marked with orange color made the C-terminal a-helix, which is
straight in the Cornell-Gdansk model, bend. The restraints marked with

red color made the C-terminal a-helix pack with the long middle a-
helix, similar to the packing in the experimental structure. This figure

was created using PyMOL.65 [Color figure can be viewed in the online

issue, which is available at wileyonlinelibrary.com.]
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significant, highlight the potential benefits of combining

methods for the prediction of free modeling targets.

The wfFUIK branch applied to refinement predictions

According to the refinement category assessors,6 the

large majority of the 50 groups that competed in

CASP105 failed to improve the quality of the starting

models and even the successful groups were able to make

only modest improvements. Only very few methods

could consistently refine the targets. Noteworthy exam-

ples are FEIG20,61 (positive DGDT_HA for 24 targets),

Seok62 (positive DGDT_HA for 16 targets), and Know-

MIN (positive DGDT_HA for 15 targets).6 As the asses-

sors pointed out,6 wfFUIK improved GDT-HA

significantly less frequently than the FEIG and Seok

groups (i.e., wfFUIK improved GDT-HA for 5 targets),

but its models improved GDT_HA by the largest

amount, with the same being true for the MolProbity

(MP) scores63 (MP is the MolProbity score that com-

bines the log-scaled counts of all-atom steric clashes,

atypical rotamer conformations, and unfavorable back-

bone torsion angles in each prediction). Also, FEIG,

Mufold, and wfFUIK are the top groups at side-chain

positioning. These conclusions reached by the assessors

are reflected in Table II, which uses GDT_TS (the com-

parative measurement used throughout this paper).

To illustrate the potential additive benefits of the

wfFUIK pipeline, Figure 4 shows a walkthrough of the

contributions of each step of the wfFUIK method to the

refinement of target TR722. First, (A) the starting struc-

ture was given to Foldit players. There were two Foldit

runs; one run treating the structure as a monomer and

another run treating it as a symmetric dimer. In total, the

players produced 256,776 structures. A filtering step was

performed on both the monomeric and symmetric set,

leaving a Unique/Filtered set of 20,488 monomers and

30,855 symmetric structures, which comprised 20% of the

total number of structures generated. They are represented

by grey dots in each plot in Figure 4. The starting struc-

ture is shown as a red color “X” and had a GDT_TS of

58.0. The structures that would be selected by na€ıvely tak-

ing the one with lowest Rosetta energy for both the

monomer and symmetric dimer are shown as pink

squares. (B) From the Unique/Filtered set, those structures

that are the cluster medoids selected by ICON,22 as well

as the lowest energy structures from Rosetta23 and

dDFIRE24 are highlighted in blue. Several structures from

this population are already more accurate than the struc-

tures generated in the previous step. Next, (C) the struc-

tures that resulted from step B were further refined using

KoBaMIN27 and are shown as cyan dots. After this step,

a higher fraction of structures has improved GDT_TS’s

relative to the step B structures. The cyan dots, generally

located down and to the right relative to the dark blue

pre-KoBaMIN population, indicate that KoBaMIN struc-

tures are refined with lower energies and improved

GDT_TS’s. (D) The structures submitted in blind predic-

tion are shown in pink stars. Those structures were

selected according to a number of energy and quality

assessment metrics and to be diverse from each other.

Figure 5(a) shows the best model out of the five sub-

mitted, which garnered a GDT_TS of 65.95 (the top

Model 1 prediction for this target came from one con-

tributing group, FLOUDAS, yielding a GDT_TS of

63.19). The best wfFUIK model achieved the “peak-

performance” in terms of DGDT_TS for TR722; that is,

it was the #1 most refined structure according to

DGDT_TS considering all the models submitted for this

target by all groups. It was the #3 most refined structure

according to DGDT_TS among all refinement targets

considering all the models submitted by all groups (see

Table II) and it was featured by the CASP105 assessors in

the refinement category for being one of three models

where large increases in GDT_HA were observed.6

The average GDT_TS of blind predictions for this tar-

get from all CASP105 participants was 52.9 6 7.5, indi-

cating that wfFUIKs best blind prediction outperformed

Table I
GDT_TS Values for the Top Prediction by wfCPUNK Compared to

Other Groups Contributing to wfCPUNK for Free Modeling Targets

Target wfCPUNK Cornell-Gdansk KIAS-Gdansk FLOUDAS

T0740 32.1 25.48 24.03 30.81
T0734 15.57 14.74 12.97 12.97
T0741 12.8 14.8 14.8 13
T0666a 23.47 19.72 18.61 23.89

aStructure was submitted late in CASP competition and was not evaluated by the

assessors. CASP10 discussions and results pertaining this target can be found at

http://www.wefold.org.

Table II
Top 15 Best Per-Target Improvements in GDT_TS Made By Any Team

Considering All Five Models Submitted and the Number of Targets for
Which Each Team Improved the Original Model

Group Target

Best GDT_TS
improvement

per target

Number of
targets for

which DGDT_TS > 0

Anthropic_Dreams TR671 10.51 3
Void_Crushers TR663 8.06 5
wfFUIK TR722 7.87 6
Schroderlab TR705 6.51 7
FEIG TR723 6.30 23
Schroderlab TR704 5.85
FOLDIT TR710 5.15 3
Seok TR681 4.84 16
BAKER TR696 4.50 8
FEIG TR738 4.42
FEIG TR662 4.33
FEIG TR750 3.71
FRESS_server TR754 3.67 6
Mufold-R TR720 3.03 6
Pcons-net TR644 2.84 1

Foldit-based methods are highlighted in yellow.
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the rest of the predictions by more than one standard

deviation. This model is ranked 93 out of 51,343 models

contained in the Unique/Filtered set, which is compara-

ble to the top 2% of structures produced by the Foldit

players. There are even better structures in the Unique/

Filtered set that were not chosen (please refer to section

What Went Wrong in the Collaborative Pipelines for a

detailed analysis). Significantly, the best structure con-

tained in the filtered set had a GDT_TS of 71.26, which

if selected would have outperformed the average predic-

tion by over 2 standard deviations. The strategy

employed by Foldit to use both monomeric and symmet-

ric dimer prediction runs increased the chance of a suc-

cessful prediction. This example shows that coupling the

human players’ abilities to refine the proteins with the

subsequent clustering, refinement, and scoring methods

in the wfFUIK protocol can make it possible to success-

fully select models among the very best from the remark-

ably large population of structures produced by Foldit.

More importantly, TR722 is not the only target for

which wfFUIK produced models that were more accurate

than the starting one as shown in Table II.

However, the wfFUIK branch did not achieve consis-

tently good results. In the section “What Went Wrong in

the Collaborative Pipelines,” we investigate the step-by-

step results of wfFUIK applied to other CASP105 targets

and show that although the structural accuracy remains,

it was the last step that consistently failed to select the

best models that had been produced by the previous

steps.

The wfFUGT branch applied to refinement predictions

This branch, which is also based on Foldit, did not do

as well as wfFUIK. Nevertheless, it produced a notewor-

thy model for refinement target TR705. In fact, the

wfFUGT branch improved the starting GDT_TS of

TR705 from 64.84 to 70.05.2 This blind prediction,

which was the best submitted for this target considering

only Model 1 and ranked 5th when considering all mod-

els, is shown in Figure 5(b) (green), along with the

native (black) and starting (red) structure. Next, we

compare the performances of wfFUGT and wfFUIK to

their base method Foldit.

Figure 4
Illustrative walkthrough of wfFUIK pipeline for the blind prediction of refinement target TR722 in CASP10. (a) The starting structure was given to
Foldit players, who produced 256,776 structures. A filtering procedure is applied to remove unlikely candidate structures. 20,488 monomers and

30,855 symmetric structures remained after filtering, shown as gray dots in each plot. The starting structure, shown as a red cross and highlighted

as a red dotted line, had a GDT_TS of 0.58. The structures that would be chosen by na€ıvely selecting the ones with the lowest Rosetta energy for
both the monomer and symmetric dimer are shown as pink squares. (b) From the Unique/Filtered set, structures that were the cluster medoids

selected by ICON, as well as lowest energy Rosetta and dDFIRE structures are highlighted in blue. (c) Structures produced after running the previ-
ous set through KoBaMIN are shown as cyan dots. (d) Structures submitted in blind prediction are shown as pink stars. The GDT_TS is shown

here normalized on a zero to one basis. [Color figure can be viewed in the online issue, which is available at wileyonlinelibrary.com.]
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Overall comparison of wfFUIK and
wfFUGT to base method FOLDIT for
refinement targets

There were six independent teams that began with

structures produced by Foldit players: FOLDIT,

Anthropic Dreams, Contenders, Void Crushers, wfFUIK,

and wfFUGT. Anthropic Dreams, Contenders, and Void

Crushers were created and run by the Foldit players

themselves (see Methods). Table II shows the top 15 best

per-target improvements in GDT_TS during CASP105

considering the 5 models predicted by all methods. This

table shows that Anthropic Dreams, Void Crushers, and

the WeFold wfFUIK branch submitted the three best per-

target improvements in GDT_TS over the starting mod-

els for the refinement category at CASP10.5 Also note-

worthy is that wfFUIK is the FOLDIT-based group with

the largest number of positive DGDT_TS.

Figure 6 shows a head-to-head comparison of the

refinement models submitted to CASP105 using the

wfFUIK and wfFUGT methods to those submitted by the

base method FOLDIT considering the best of five mod-

els. This figure is based on the data shown in Table III

which provides a comparison of the best refinement

structures submitted in CASP105 from Foldit-derived

branches versus all predictions submitted by all groups.

Specifically, the Foldit-derived models are compared

against the mean of the GDT_TS values for all models

submitted for each target. This table also provides the

standard deviation for each target. wfFUIK submitted

more accurate predictions than FOLDIT by GDT_TS in

a large majority (74%) of all of the refinement targets

attempted by both teams. On the other hand, the

wfFUGT method outperformed FOLDIT in 53% of those

cases. This indicates that wfFUIK is a better refinement

strategy than wfFUGT, and its improved performance is

due to the multistep selection process used in the

method. Furthermore, we performed a one-sided t-test

comparing the best predictions by FOLDIT to those by

wfFUIK and wfFUGT. The P value between FOLDIT and

wfFUIK is 0.031, indicating a statistically significant

improvement. Conversely, the P value between FOLDIT

and wfFUGT is 0.317.

Although the wfFUIK branch amplified the refinement

relative to the base method FOLDIT, many of the sub-

mitted models did not refine the structures relative to

Figure 5
(a) Comparison of native structure (black) and refined structure
(green) produced by wfFUIK branch for TR722. The refined structure

using this protocol had a GDT_TS of 65.95, whereas the starting model

(red) had a GDT_TS of 58.0. This structure is a dimer and adopts a
coiled-coil fold. (b) Illustration of best Model 1 prediction produced by

any method in CASP10 to improve the metric GDT_TS for target
TR705. The WeFold method wfFUGT achieved this improvement,

increasing the starting GDT_TS from 64.84 to 70.05. The loops in the
upper right region of the figure, as well as in the bottom left were the

regions where the most refinement occurred. TR705 adopts a b-

sandwich fold. These examples highlight significant improvements in
refinement for proteins containing only a-helices and b-sheets. This

figure was created using PyMOL.65 [Color figure can be viewed in the
online issue, which is available at wileyonlinelibrary.com.]

Figure 6
Comparison of improvements in Foldit models by WeFold methods. (a)

Using wfFUIK, 74% of structures were better refinements than the best

structure submitted by FOLDIT. (b) Using wfFUGT, 53% of structures
were better refinements than the best structure submitted by FOLDIT.

The improvements are indicated by the differential bars in white from
the base bars in red. [Color figure can be viewed in the online issue,

which is available at wileyonlinelibrary.com.]
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the start. Thus, although it achieved DGDT_HA > 0 in

5 of the 23 targets attempted6 and placed among the top

10 ranked groups where Model 1 DGDT_HA was posi-

tive,6 overall it ranked below the na€ıve method of doing

nothing to the input structure according to the score

used by the CASP105 refinement assessors, which

includes deviations of GDT_HA, RMSD, and other met-

rics.6 This result may not be surprising as the method

components have not been optimized to maximize per-

formance given the output from each stage of the predic-

tion pipeline. Optimization of the stages in each WeFold

branch to maximize performance relative to the input

from the previous stage(s) may lead to improved per-

formance of the branches in the future. Nevertheless,

these results show that the wfFUIK pipeline did consis-

tently outperform its base method FOLDIT even without

prior optimization.

The WeFold branch

Figure 7 shows the performance of the WeFold branch

in absolute comparison to all Model predictions, and in

relative comparison to the top Model predictions by all

groups and all methods. The absolute performance is

assessed based on the Z score of the GDT_TS of the best

model submitted by WeFold relative to all predictions by

all groups and methods. We calculated the Z score of

each target as Z2score5
ðBest We Fold PredictionGDT TS2lGDT TSÞ

rGDT TS
,

where lGDT_TS and rGDT_TS denote the mean and

standard deviations of the GDT_TS values for all Mod-

els submitted to CASP105 for that particular target. The

relative comparison is based on the ratio between the

GDT_TS score of the best WeFold prediction and the

best GDT_TS achieved by all groups for each target,

calculated as %Best5 Best We Fold PredictionGDT TS

Best CASP ModelGDT TS
3100. The

WeFold branch performed comparably (11 targets) or

better (12 targets) than TASSER (one of its base meth-

ods) in 53% of the attempted targets as shown in Table

IV. This table provides a comparison of best structures

submitted in CASP105 for tertiary structure prediction

by WeFold branches and their component methods to

the best and average predictions submitted by all

groups. The best prediction for each target among these

methods is bolded. In some cases such as T0676, T0700,

Table III
Comparison of Best Refinement Structures Submitted in CASP10 by Foldit-Derived Branches to the Average GDT_TS Value Calculated Overall Pre-

dictions Submitted by All Groups

Prediction
target

FOLDIT
(068)

Void crushers
(165)

Anthropic
dreams (085)

Contenders
(341)

wfFUIK
(149)

wfFUGT
(260)

Average of All
CASP predictions

(61 standard
deviation)

TR644 78.55 71.99 79.61 81.92 82.45 83.33 76.57 6 11.47
TR655 65.86 67.57 64.00 69.29 69.00 64.57 65.08 6 3.74
TR661 64.32 68.65 65.68 NA 65.81 NA 74.11 6 7.21
TR662 81.00 83.67 82.00 83.33 84.00 83.33 79.29 6 9.40
TR663 69.08 77.30 76.48 NA 54.93 54.93 60.22 6 12.10
TR671 61.08 64.20 66.19 51.70 59.66 59.66 49.31 6 11.54
TR674 77.65 77.84 78.98 78.60 82.01 NA 81.76 6 5.08
TR679 67.08 69.72 69.97 72.24 69.85 NA 68.42 6 6.51
TR681 76.57 74.22 74.48 73.30 77.22 NA 70.32 6 14.63
TR688 69.19 74.32 72.57 NA 71.76 NA 74.18 6 5.37
TR689 81.08 85.05 84.93 81.42 83.88 NA 83.01 6 7.29
TR696 59.75 64.75 63.75 61.00 65.25 67.75 63.01 6 9.90
TR698 63.23 64.58 64.92 61.34 64.71 65.13 63.12 6 3.44
TR705 64.84 64.06 69.27 63.80 64.84 70.05 60.39 6 9.66
TR708 78.57 82.65 81.50 78.32 85.71 81.00 82.44 6 3.54
TR710 80.28 77.83 74.87 74.23 78.09 76.16 72.33 6 3.74
TR712 81.18 86.83 85.22 82.26 88.04 86.42 86.65 6 5.90
TR722 47.24 59.05 54.33 60.83 65.94 43.11 52.92 6 7.47
TR723 83.40 79.01 83.02 86.45 86.83 82.82 82.57 6 4.10
TR747 86.11 83.89 81.11 84.72 83.89 79.72 79.99 6 5.09
TR750 67.44 66.35 67.17 68.68 72.67 71.57 72.88 6 5.76
TR752 86.49 88.85 89.02 88.34 88.51 88.51 86.75 6 3.12
TR754 73.90 73.90 75.73 60.66 71.69 56.25 70.26 6 7.54
# Wins 2 3 3 2 7 4 2

Besides the average GDT_TS value, the corresponding standard deviations are provided for each target. GDT_TS values were tabulated using the prediction center’s offi-

cial results on the CASP10 webpage.2 NA indicates that a structure was not submitted and evaluated for this target. Group numbers are denoted in parentheses. The

best prediction for each target among these methods is bolded. Foldit-based human groups: Void Crushers and Anthropic Dreams were able to refine and select the

best structure among the cohort three times each, whereas FOLDIT was able to select it for two targets. In these two cases though, Foldit’s selection produced the top

improvement in GDT_TS of any method in CASP10. These teams were a collaboration of citizen scientists. The WeFold branches wfFUIK selected the best structure

seven times and wfFUGT four times indicating the enhanced performance of using these synergistic branches utilizing the structures refined by the citizen scientists fol-

lowed by subsequent clustering, further refinement, and selection.
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T0735, and T0744, the WeFold branch did substantially

better than TASSER in terms of both GDT_TS and

overall ranking (Table IV). The reason for the difference

between WeFold and TASSER (human group) is due to

the difference between the model selection methods,

that is, APOLLO (used by WeFold) and GOAP (used by

TASSER). When consensus information was useful,

APOLLO performed better than GOAP and, conse-

quently, WeFold performed better than TASSER. Overall

though, TASSER significantly outperformed the WeFold

branch “winning” 17 targets in the cross-comparison,

with a one-sided P value of 0.032 (Table IV). This result

indicates that WeFold branch has substantial room for

improvement.

What went wrong in the collaborative
pipelines

In this section we discuss the main reasons why the

collaborative effort did not do as well as expected given

the combination of methods. In some cases such as

wfCPUNK and WeFoldMix, the branches did not

attempt enough targets to make any statistically signifi-

cant conclusion. In other cases, such as wfFUIK and

Figure 7
(a) Absolute and (b) relative performance of the WeFold branch on the 43 human targets attempted. The absolute performance is assessed based
on the Z score of the GDT_TS of the best model submitted by WeFold relative to all other predictions by all groups and methods for each target.

The relative comparison is based on the ratio between the GDT_TS score of the best WeFold prediction and the best GDT_TS achieved by all
groups for each target. In both cases, longer positive bars in the x direction represent better performance. [Color figure can be viewed in the online

issue, which is available at wileyonlinelibrary.com.]
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wfFUGT we present a detailed analysis that shows the

reason why the collaborative branch failed to produce

more positive results.

Problems identified in the wfCPUNK branch
applied to human free modeling targets

This branch submitted only 4 free-modeling targets.

This low number of submissions is due to both the

uncertainty with which targets are deemed as “Free Mod-

eling” prior to their prediction and the high computa-

tional cost of performing MREMD calculations which is

aggravated by the limited computational resources avail-

able. Going forward, the branch plans to explore the use

of a consensus from different contact prediction methods

rather than the results from a single method to increase

its chances for success.

Problems identified in the wfFUIK and
wfFUGT branches applied to human tertiary
structure prediction targets

We observed a stark difference between the perform-

ance of the WeFold and FOLDIT methods for tertiary

structure prediction targets and refinement targets, and

these differences can be explained by discrepancies

between the input data. In CASP105, Foldit had two

runs, called puzzles, for tertiary structure prediction tar-

gets. In the first run (Run 1) players are only given the

sequences of the target and several alignments to proteins

Table IV
Comparison of Best Structures Submitted in CASP10 for Tertiary Structure Prediction by WeFold Branches and Their Component Methods to the

Best and Average Predictions Submitted by All Groups

Prediction
target

TASSER
(079)

FLOUDAS
(077)

Cornell-
Gdansk

(152)
FOLDIT

(068)
wfFUIKa

(149)
wfFUGTa

(260)

WeFold
branch

(101)
wfCPUNK

(287)
WeFoldMix

(441)

Average of
all CASP10
predictions

(61 standard
deviation)

Best CASP10
prediction by

all groups,
all methods

T0644-D1 83.51 28.72 17.38 84.93 75.89 60.99 84.04 18.97 61.78 6 23.62 85.28
T0649-D1 33.42 21.74 16.44 28.40 20.216 8.10 36.82
T0651 33.47 11.42 28.306 7.28 37.70
T0655-D1 76.67 25.67 21.33 76.83 23.67 60.626 17.10 79.83
T0663 40.62 19.08 23.19 40.46 32.806 8.90 42.93
T0666-D1 32.64 23.89 19.72 31.11 22.666 4.50 33.75
T0668-D1 40.06 33.01 35.90 36.54 32.05 30.45 36.54 30.77 30.346 4.73 44.23
T0673-D1 65.73 34.68 34.27 50.81 40.73 46.37 46.37 27.02 35.976 10.27 66.94
T0676-D1 26.45 20.38 22.11 38.87 18.50 21.756 7.35 43.21
T0678-D1 37.99 28.41 25.65 35.55 34.09 39.29 25.00 25.816 6.71 42.53
T0680-D1 75.52 51.82 31.51 50.26 49.22 50 67.19 45.356 14.74 77.60
T0684 14.52 13.07 15.14 14.42 12.126 1.87 18.67
T0687-D1 76.50 58.75 76.50 64.916 15.10 78.25
T0691-D1 52.59 46.46 48.35 53.30 53.77 30.90 23.82 33.576 12.32 57.31
T0700-D1 85.00 62.86 55.00 65.71 55.71 55 94.29 55.00 52.86 61.466 14.53 96.43
T0704-D1 69.91 53.68 69.81 62.286 6.97 71.00
T0707-D1 54.59 38.55 52.65 38.246 13.75 54.59
T0709-D1 96.88 96.88 53.12 95.83 93.75 94.79 96.88 50.00 93.75 86.436 16.78 98.96
T0711-D1 89.84 87.50 42.19 83.59 82.81 85.94 89.06 40.62 45.31 73.366 17.35 90.62
T0713 27.41 27.81 26.94 21.696 6.62 30.28
T0717 33.14 29.24 9.55 33.39 23.736 8.28 38.54
T0719 11.59 12.73 11.21 8.826 2.86 16.15
T0720-D1 56.31 53.66 14.39 56.44 37.256 13.50 65.78
T0724 29.70 31.62 26.92 21.866 6.25 31.62
T0732 42.38 36.71 12.14 38.15 31.096 11.07 42.96
T0734-D1 18.51 12.97 14.74 14.51 15.57 13.926 2.41 23.82
T0735 12.38 10.05 9.35 22.20 10.546 4.65 28.66
T0739 9.89 7.36 10.26 6.246 2.78 14.38
T0740-D1 30.16 30.81 25.48 24.52 29.52 22.58 24.84 32.10 21.686 4.55 38.87
T0741-D1 13.20 13 14.80 11.40 12.80 12.096 1.23 17.20
T0742-D1 52.45 22.34 13.51 20.00 23.326 15.96 57.13
T0743-D1 70.17 69.74 25.88 63.60 61.40 64.03 49.78 25.66 42.676 15.12 73.25
T0744-D1 38.69 35.54 9.54 44.00 15.00 31.496 13.17 61.62
T0746-D1 52.82 49.16 7.62 48.70 7.85 37.826 15.26 52.82
# Wins 17 3 2 1 0 1 12 1

The average GDT_TS value and corresponding standard deviations for all CASP Model submissions are provided for each target. GDT_TS values were taken from the

prediction center’s official results available on the CASP10 website.2 An empty cell indicates that a structure was not submitted and evaluated for this target. Group

numbers are denoted in parentheses. The best prediction for each target among these methods is bolded.1 Due to a discrepancy in the input data used for FOLDIT,

wfFUIK, and wfFUGT tertiary structure predictions as described in the main text, the results cannot be directly compared to those obtained by other methods. The

data is tabulated strictly for reporting and it not meant for comparison since they are not fairly comparable.
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determined by fold recognition methods. In this run, the

players can modify the alignments and must determine

how to connect the regions that are not well aligned, and

have full responsibility for the folding pathway of the

proteins. These were the Foldit predictions that were

shared with the various WeFold branches. In the second

run (Run 2), players are given a number of starting

models generated by servers that have performed well in

previous CASP experiments. Thus, in Run 2, folding was

somewhat akin to a refinement problem. Often, these

initially provided structures are well predicted and are

trapped in deep local minima, so subsequent refinement

was unable to substantially change the initial structures.

It was observed that the structures generated by Run 2

more often yielded lower energy (higher in-game scores)

than the structures generated by Run 1, and thus they

were usually the final models submitted by the FOLDIT

team. Because the server predictions used for Run 2 were

not publicly released until six days after the server dead-

line for each CASP105 target, there was not enough time

to send these Run 2 Foldit predictions through the

WeFold pipelines (often these Run 2 Foldit puzzles

would close the day before the CASP105 target deadline).

As a result, it is unfortunately not possible to draw any

fair meaningful comparisons between wfFUIK, wfFUGT,

and FOLDIT in tertiary structure prediction. Reflecting

on the design of the experiment, this is one area that

should be improved upon for the next CASP so that the

methods could be directly compared.

Problems identified in the wfFUIK branch
applied to refinement predictions

Although the wfFUIK method net improved upon its

base method FOLDIT, like most refinement methods,

wfFUIK suffered from two problems: (1) degrading of

the starting model and (2) final model selection. This is

not surprising given that the starting structures which

are already accurate predictions have been driven into

deep local minima. In order to analyze the effects of

each component method in the pipeline and show where

it failed, we performed a step-by-step analysis of the data

starting from the unique/filtered set (the U step in

wfFUIK) for a subset of 13 randomly selected refinement

targets. We use this subset to demonstrate the difficulties

in selection as a proof by contradiction.

It is noteworthy to mention that the step-by-step anal-

ysis of the performance is very time consuming as it

requires evaluating tens to hundreds of thousands of

protein models created by the Foldit players for each tar-

get. Therefore, we chose a random subset consisting of

half of the total number of refinement targets attempted

by this branch.

Figure 8(a) demonstrates critical weak points of the

method and the results of this analysis. First, the Foldit

players were able to refine the initial structure in 12/13

Figure 8
(a) Breakdown of the effect of each step in the wfFUIK pipeline in

order to identify individual contributions to the pipeline, as well as
areas needing further attention. The y axis is normalized to show the

ratio of the GDT_TS of the corresponding model to the GDT_TS of

the starting model so that it can be compared across targets. The legend
shows the lowest energy dDFIRE structure (black) in the Unique/Fil-

tered set, lowest energy Rosetta structure from all Foldit conformations
(red), best GDT_TS contained in the ICON 1 Lowest E Rosetta 1

Lowest E dDFIRE step of the pipeline (green), best GDT_TS contained
after those structures are refined by KoBaMIN (yellow), best blind pre-

diction of 5 submitted in CASP10 (dark blue), highest GDT_TS struc-

ture contained in the Foldit Unique/Filtered set (pink), and the best
GDT_TS structure submitted to CASP10 by any team (light blue). (b)

Enrichment of candidate conformers by wfFUIK compared to candidate
conformers in the unique/filtered set. Shown are the probabilities of

selecting a better structure than the start in the unique/filtered set com-
pared to the enriched probability when choosing from the final set of

wfFUIK models. [Color figure can be viewed in the online issue, which

is available at wileyonlinelibrary.com.]
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of these targets. In 6/13 targets, the most refined struc-

ture in the unique/filtered set (pink) has a GDT_TS

value that is greater than or equal to the best submitted

by any group in CASP105 (light blue) by an appreciable

margin. Table V shows the best GDT_TS value at each

step of the wfFUIK branch (columns) for each of the 13

targets (rows) considered in this test. The last 2 rows

show the accumulated GDT_TS values (
P

GDT_TS) over

the 13 targets, as well as the difference (D
P

GDT_TS)

between the
P

GDT_TS for any column and theP
GDT_TS for the column corresponding to the starting

structures. If the best structure in the Foldit 1 Unique

column could be selected then the total improvement by

GDT_TS would be 152.38, which is in line with the

very best from each single method submitted to

CASP105 of 153.17 (last column). Unfortunately, none

of the selection procedures used by FOLDIT (described

in the Methods section) or the WeFold branches were

able to select these models.

Despite the ranking problems, the wfFUIK method

overall did much better than the na€ıve approach of tak-

ing the lowest energy structure from a single energy

function such as dDFIRE24 or Rosetta.23 Choosing

dDFIRE24 or Rosetta23 as a selection strategy would

yield a D
P

GDT_TS of -133.69 and 2120.24 for these 13

targets (see Table V), which represent a GDT_TS degra-

dation of 14 and 12%, respectively. The ICON step in

wfFUIK selected on average a subset of 23 structures. In

11/13 targets, this subset included structures with a

higher GDT_TS value than the lowest energy dDFIRE or

Rosetta structure. Therefore, the ICON step achieves an

improvement of 104.45 GDT_TS points over the lowest

energy dDFIRE and 91 GDT_TS points over the lowest

energy Rosetta conformers, a 10% improvement over the

na€ıve method.

KoBaMIN was able to refine the best structures con-

tained in the ICON set in 10/13 targets, thus contribut-

ing small, but consistent gains in GDT_TS in the

pipeline. Each step (Foldit, Unique, ICON, KoBaMIN)

worked together to identify candidate structures that

were often better than the lowest energy of a single met-

ric alone. Unfortunately, the last step of the wfFUIK

method, which ranked the subset of KoBaMIN-refined

structures and selected the five models for submission

failed to pick the best structures in 7/13 targets (dark

blue).

Besides the weakness identified at the final ranking step

of the pipeline, another problem in wfFUIK was associated

with the small size of the Unique/Filtered set. An ideal

selection procedure would be able to enrich the probabil-

ity of selecting among the most refined structures from

the massive number of conformers available. In the

Unique/Filtered set, there were only 6/13 targets where

there were more than 10 structures that were refined rela-

tive to the starting GDT_TS. In 6 of the remaining 7 tar-

gets, there were 3 or less better structures than the

starting structure. To our knowledge, there is no current

method capable of picking those structures among the

thousands in the Unique/Filtered sets (average of 15,836

conformers) and hundreds of thousands in the unfiltered

Table V
Illustration of the Effect of Each Step in the wfFUIK Method on 13 CASP10 Refinement Targets

TARGET Start GDT_TS
Best in unique/

filtered set
Lowest

E dDFIRE
Lowest

E Rosetta
Best in
ICON

Best after
ICON1KoBaMIN

Best
submitted

model

Best
Model 1

in CASP10

Best
MODEL
in CASP

TR661 80.68 78.51 59.46 55.27 69.69 71.49 65.81 81.35 81.35
TR663 69.24 69.74 41.94 53.62 54.44 54.77 54.93 74.84 77.3
TR679 71.73 74.25 68.22 67.71 71.48 71.61 69.85 73.74 74.37
TR688 78.24 78.24 68.78 67.43 72.7 72.43 71.76 79.73 80.14
TR696 71.5 73.5 61.75 51.25 63.5 63.5 63.5 75.5 76
TR698 65.55 72.27 64.71 59.66 64.71 65.13 64.71 67.02 67.65
TR705 64.84 73.7 65.36 63.02 70.57 70.83 64.84 70.05 71.35
TR710 75.13 83.76 71.78 70.62 80.41 79.51 78.09 77.83 80.28
TR722 57.09 69.69 42.32 58.27 61.02 65.75 65.75 65.75 65.75
TR723 85.11 89.31 72.52 86.45 86.45 86.83 86.83 88.17 91.41
TR747 83.61 89.44 86.39 78.33 86.39 87.78 83.89 85.28 86.11
TR752 90.37 91.22 86.32 83.28 88.01 88.51 88.51 90.71 90.88
TR754 78.31 80.15 48.16 56.25 72.79 71.32 71.32 79.04 81.98
RGDT_TS 971.4 1023.78 837.71 851.16 942.16 949.46 929.79 1009.01 1024.57
DRGDT_TS from Start 0 52.38 2133.69 2120.24 229.24 221.94 241.61 37.61 53.17

The first column indicates the CASP10 target. The second column indicates the starting structure’s GDT_TS value as calculated using the TMScore program.48 The

third and fourth columns indicate the GDT_TS of the lowest energy dDFIRE24 and Rosetta23 structures, respectively. The fifth column indicates the best structure con-

tained in the set of candidates after ICON clustering, in addition to the lowest energy dDFIRE and Rosetta structures. The seventh column indicates the GDT_TS of

the best structure after refinement by KoBaMIN.27 The eighth column is the best structure submitted in blind predictions during CASP10 by the wfFUIK method. The

ninth and tenth columns indicate the best Model 1 and best of the five Models submitted in CASP10 by any method. Green text indicates that the structure was a

refinement of the start. Blue text indicates that the best contained model is more accurate than any submitted during CASP10. This demonstrates the selection challenge

the structure prediction community faces; that is, even though there are sampling methods that can generate high-accuracy structures, the best forcefields and selection

methods still cannot pick these “best” structures among the ensembles. If one were able to select the best produced Foldit structure, generated by the game players, this

would be comparable to the best structure submitted in CASP by all groups.
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set (Supporting Information Table S2). The method as it

currently stands was unable to consistently select from the

small pools of refined models among the significantly

larger set of total models contained in the Unique/Filtered

sets, as demonstrated by this subset of targets. These

results suggest the filtering step (the “U” step in wfFUIK)

may have been too stringent for these sets that contain

many very similar structures. Based on the challenges

observed, we believe a refinement strategy capable of

addressing the selection of the best model among a large

pool of candidate models would be of utility.

What went right and what went wrong
beyond the pipelines

The WeFold experiment showed that part of the pro-

tein structure prediction community is ready to collabo-

rate at a larger scale. More importantly, the WeFold

experiment showed that such collaboration can produce

the following results, which include:

1. A cyber-infrastructure that facilitates frequent, open

discussions among researchers and allows the creation

of hybrid pipelines composed of state-of-the-art meth-

ods thus leveraging their strengths at a scale that had

not been tried before.

2. Resources to share and process extremely large data

files and databases and to execute computationally

expensive codes.

3. The creation of pipelines by the contributing labs

themselves. Having the experts contributing their

developed methods in their best way possible presum-

ably is better than the alternative approach of a single

lab/person attempting to utilize all of the methods in

isolation without any guidance of how to best use

them. The collaborative approach also allowed for the

ability to adapt submethods to work in the setting of

WeFold within a reasonable amount of time, since the

individual groups are the experts to modify the source

code of their own methods. Adaptation of the source

codes developed by diverse groups, so that they can

work together, may have proven difficult and time

consuming for a single group.

4. The generation of a vast number of decoys. Almost 9

million decoys were contributed by the different

groups as shown in Supporting Information Table S2.

This is over 170 times the number of models submit-

ted to CASP10.5 If curated, these structures could be

very useful for designing, training, and improving

energy and scoring functions, which as we have just

shown, have difficulty in selecting top models among

an ensemble of very similar decoys.

5. A unique opportunity for students and young

researchers to interact on a daily basis with researchers

from other labs, to share their models, and to learn

new methods and uses that they can then share with

their lab members.

6. Data and discussions which are all publicly available

and searchable.

Although the WeFold experiment produced enough

evidence to warrant its continuation, it did not produce

enough good results to categorically claim success. Some

of the issues that stood in the way to success include:

1. Only 13% of the manual groups registered for

CASP105 participated in the experiment. The project

needs to scale up to increase the chances for success.

The higher the number of components contributed,

the higher the chances to create the ideal combination

of methods that perfectly complement each other.

2. The gateway is overly restrictive and is based on an

approach that does not scale up. All gateway users

have to apply for and get NERSC accounts even if

they do not need to use the NERSC computers.

NERSC can only issue accounts to those users that are

affiliated to a trusted institution.

3. The gateway lacks a workflow feature that permits

users to quickly assemble pipelines. Members of a lab-

oratory contributing a component to any of the pipe-

lines needed to run that component and then pass the

output to the next lab contributing the next compo-

nent in the pipeline. This method of operation made

it impossible to quickly optimize and benchmark the

new pipelines. It also made the execution of the pipe-

lines very time consuming. Thus, the hybrid methods

were created during the first days of CASP105 and

there was no time to optimize their components to

work within the new pipeline. For example, the ICON

component of the wfFUIK branch was originally

designed by the Floudas lab to deal with the hundreds

to thousands of structures generated by their own

pipeline. Therefore, it needed to be adapted to work

with hundreds of thousands of structures in the

wfFUIK pipeline. Because there was no time for

adapting the algorithm or parallelizing the code, a

preprocessing step had to be included in wfFUIK in

order to filter out structures before using ICON. This

filtering solution step may have been too stringent for

the refinement targets as the models generated are

usually very similar but there was no time to change

the procedure.

4. The gateway lacks a feature that allows users to run

their individual codes and collaboratively create pipe-

lines directly via the gateway. Therefore, users could

not use the gateway as a launching platform to run

their codes and their collaborators could not see the

status of those runs.

DISCUSSION

Successful blind prediction of a protein’s structure

requires the correct identification of its secondary

G. A. Khoury et al.
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structure, the best template and sequence alignment, the

accurate prediction of contacts, the accurate prediction

of the b-sheet topology, broad sampling, and selection

among the populations of structures generated.13 Each

one of these problems is extremely complex and no sin-

gle lab, no matter how big its resources, has found the

optimal solution to all of them. Therefore, we strongly

believe that success will come by combining methods

and expertise from the different labs, organizations, and

individuals that have a stake at solving this problem.

The WeFold experiment was created to realize this

potential. WeFold is a social-network-based experiment

that comprises both a platform that provides a cyber-

infrastructure (high performance computing, science

gateway, and advanced networking) and a community of

committed individuals that strongly believe in collabora-

tion to advance science. WeFold brought together junior

and seasoned scientists from thirteen labs around the

world. Prior to WeFold these groups used their own pre-

diction methods to compete against each other during

CASP. WeFold enabled them to compete and collaborate

within the same venue; therefore, coopetition accurately

describes this interaction. A science coopetition of this

magnitude that takes advantage of both expert and citi-

zen scientists from around the world is unprecedented.

The execution of such an ambitious project is not

straightforward and it is important to determine what

needs to be done to warrant its continuity and success.

The WeFold pipelines are a combination of compo-

nents, which are part of state-of-the-art methods that

have been optimized and benchmarked and so, outper-

forming them was a difficult task. Nevertheless, the

WeFold experiment shows that it is possible for a collab-

orative method to outperform its base method. For

example, the combination of UNRES with the contact

predictions of Floudas group and the KobaMIN from the

Levitt group for the prediction of Target T0740 led to a

model that was closer to the experimental one that those

produced by UNRES alone; and the combination of Fol-

dit with a multistep process consisting of filtering, clus-

tering, refinement, and selection could identify improved

models among the hundreds of thousands of models cre-

ated by players in more cases than Foldit alone. However,

the improvements were not consistent across base meth-

ods and prediction categories and in certain cases it was

not possible to perform a fair comparison due to dis-

crepancies between the input data used by the WeFold

branches and the base methods. Hence, it is too early in

this collaborative approach to science to yield any larger

conclusions. Nevertheless, the results shown here warrant

its continuity and highlight the areas in need of

improvement. It is also evident that new and different

collaborative methods must be tried in future WeFold

experiments to maximize the chances of finding the ideal

combination of methods that optimally complement

each other. For example, it may be interesting for scien-

tific value and for the community in general to create

pipelines that combine the very top structure prediction

method(s) and the very top refinement methods. These

methods themselves are automated pipelines and may be

amenable to combination.

CONCLUSION

The implementation of a coopetitive effort is not a

trivial task. Therefore, we decided to tackle it step-wise.

First, we had to gauge the community to determine if

there was enough interest for a collaborative project of

this scope. Fortunately, we realized that at least part of it

was ready. Second, we had to develop a prototype infra-

structure with the essential features to support such col-

laboration. We determined that the basic features needed

to start were password-protected online discussions and

sharing of files and we implemented such prototype. We

also obtained the resources that were essential to run the

expensive codes and store the files. Using these tools, the

community created new hybrid pipelines, contributed an

overwhelming number of models and even shared their

final models which were ranked by different techniques.

The project has recently initiated its next phase and

efforts are currently underway on the following fronts:

Science gateway

We are collaborating with members of the Science

Gateway Institute (http://www.sciencegateways.org) to

develop a new science gateway using cutting-edge tech-

nologies.64 This gateway will provide users with the tools

to collaborate at a larger scale, as well as to assemble

pipelines, run codes, manage large data, and selectively

share information with other groups or with the public.

Pipelines

The community has identified some critical areas that

need improvement as described in this work. Efforts are

underway to optimize and fine-tune these methods

tested during CASP105 with the goal to further enhance

their combined predictive ability. These efforts include a

hierarchical clustering method to efficiently and effec-

tively select representatives from the large set of protein

structures and a scoring function that takes advantage of

machine learning techniques and the massive amount of

structural data generated during the WeFold experiment

that is now publically available.

Reach out to the community beyond CASP

Our goal to engage the large community is very ambi-

tious but again, we plan to accomplish this gradually. We

will create a database of WeFold decoys that will be avail-

able for downloading and querying, as well as its associ-

ated metadata that include protein-like features such as

WeFold Protein Structure Prediction Coopetition
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those proposed and successfully used for selecting models

(Chen Keasar, Personal Communication). We have initi-

ated discussions with members of the machine learning

community and will present the scoring function chal-

lenge to them during an upcoming workshop. The bar-

riers to access the gateway must be lowered to allow the

expansion of the WeFold community. In this new

approach to doing science, ideas can come from any-

where, talents can come from everywhere, and we need

to ensure that WeFold provides an environment where

people have the opportunity to express their ideas, to

bring their best contribution, and to merge those ideas

and contributions into methodologies that accelerate

innovation and push the protein folding field forward.
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