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Abstract: A key issue in macromolecular structure modeling is the granularity of the molecular rep-
resentation. A fine-grained representation can approximate the actual structure more accurately,

but may require many more degrees of freedom than a coarse-grained representation and hence

make conformational search more challenging. We investigate this tradeoff between the accuracy
and the size of protein conformational search space for two frequently used representations: one

with fixed bond angles and lengths and one that has full flexibility. We performed large-scale

explorations of the energy landscapes of 82 protein domains under each model, and find that the
introduction of bond angle flexibility significantly increases the average energy gap between native

and non-native structures. We also find that incorporating bonded geometry flexibility improves

low resolution X-ray crystallographic refinement. These results suggest that backbone bond angle
relaxation makes an important contribution to native structure energetics, that current energy func-

tions are sufficiently accurate to capture the energetic gain associated with subtle deformations

from chain ideality, and more speculatively, that backbone geometry distortions occur late in pro-
tein folding to optimize packing in the native state.
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Introduction
Macromolecular structure prediction and design

efforts are challenged by the vast size of the confor-

mational space available to macromolecules. For

example, even a small 100 amino acid protein has

thousands of degrees of freedom (DOFs). Although

some approaches model this full parameter space

explicitly,1,2 most structure prediction and design

efforts attempt to reduce the complexity of the prob-

lem by reducing the dimensionality.3–5 For example,

Rosetta6 typically uses an internal coordinate sys-

tem with fixed bond angles and lengths, and ideal-

ized aromatic ring structures. Only torsion angles

are allowed to vary, reducing the dimensionality of

the above 100-residue protein example from thou-

sands to hundreds. This reduces the size of the
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search space and makes gradient based minimiza-

tion more efficient.7

One potential problem with any reduced dimen-

sionality description is that the accuracy of the rep-

resentation may be compromised, resulting in

inaccurate energy evaluations. The reduced repre-

sentation may restrict the molecule from accessing

low energy states that require relaxation of the con-

strained variables. Similar problems arise from the

common simplification that electron distributions

around atoms can be approximated by fixed-point

charges centered on the nuclei. The resulting inac-

curacies in the electrostatic energy are the subject of

current work on polarizable force fields with off-

atom charges.8,9

Determining whether a more detailed, higher

dimensionality description warrants the increase in

the difficulty of conformational search for the lowest

energy state is a challenging problem in itself. In

this study, we describe a general approach to com-

paring different dimensionality protein representa-

tions, and use it to investigate the tradeoff between

the changes in conformational space size and model

accuracy associated with ideal versus flexible bond

length and angle representations.

Results

Protein structure prediction is a global optimization

problem involving a search for the lowest energy

structure. Comparing the effectiveness of alternative

polypeptide chain representations is not trivial:

introduction of additional DOFs will almost always

result in lower energy models both close to the

native structure and far from the native structure,

and the effects of this on conformational search can

be quite complex. The most straightforward

approach—carrying out ab-initio structure predic-

tion calculations using different representations and

evaluating the success in prediction—is challenging,

as it is difficult to converge global searches over the

vast protein conformational space.

We have taken an approach to tackling the rep-

resentation granularity problem that reduces the sto-

chastic variation inherent in Monte Carlo global

optimization. Large sets of models are generated

which span the conformational space, and the lowest

energy structures in each RMSD interval are col-

lected. These states collectively represent the low-

lying minima in the energy landscape. Changes in

model representation and optimization method are

then evaluated by relaxing each model in the set and

evaluating the energy gap between models inside and

outside of the native energy minimum: representa-

tions leading to larger energy gaps (normalized based

on the spread in energies among the models) are con-

sidered better than those with smaller gaps.

We used this approach to compare fixed and

flexible bond angle representations, and optimiza-

tion in internal coordinates versus Cartesian coordi-

nates (described in Methods and shown in Fig. 1).

Large numbers of conformations for 82 different pro-

teins were optimized in the different representations

for a range of weights on the bonded geometry term.

The results are summarized in Figure 2. Figure 2(A)

shows some of the energy landscapes for which there

was a marked difference between representations. It

is evident that the energy gap between close-to-

native conformations and far-from-native conforma-

tions is larger in the flexible bond angle representa-

tion [Fig. 2(A), right] than in the fixed

representation [Fig. 2(A), left]; indeed for protein

2nr7 (bottom row), there is no energy gap in the

fixed representation but a clear gap in the flexible

representation.

It is not feasible to inspect energy landscapes for

82 proteins for many different parameter values;

instead, to quantify the magnitude of the energy gap,

we developed a discrimination measure described in

the methods section and outlined in Figure 2(B). We

computed the average energy gap over all 82 proteins

for fixed internal geometry, flexible internal geome-

try, and Cartesian geometry. Figure 2(C) summarizes

the dependence of the energy gap on the weight on

the bond geometry potential. Consistent with the

selected example landscapes in Figure 2(A), flexible

protocols performed significantly better (more

Figure 1. Internal coordinate vs. Cartesian coordinate repre-

sentation. Internal coordinates describe a protein structure in

terms of angles, lengths, and torsions; Cartesian coordinates

describe a protein’s conformation using the (x, y, z) position

of each atom.
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negative discrimination scores indicate larger energy

gaps) over the full set compared with the fixed proto-

col. As expected, all three methods yield similar

energy gaps at high covalent restraint weights,

where the two flexible models converge on the ideal

geometry case. No difference in energy gap is seen

between the flexible protocol variants. The slight

drop in discrimination measure at very low covalent

restraint weights is likely an artifact of optimization

under these unphysical conditions.

We hypothesized that flexibility in certain bonds

may be more important to the energy gap than

others. For example, flexibility in backbone

geometry may play a much larger role in sharpening

the energy landscape than flexibility at the tip of a

side chain. To identify, which DOFs were responsible

for the improved discrimination, we repeated the

discrimination experiments with different subsets of

the bond angles and lengths free to vary in internal

coordinate space; the results are summarized in Fig-

ure 3. We found that most – but not all – of the

increase in energy gap is obtained by allowing only

the backbone angles to deviate from the ideal val-

ues. Allowing only sidechain angles or only s (N-Ca-

C) angles to vary had less effect. Allowing variation

in bond lengths alone [Fig. 3(B)] had little effect on

Figure 2. Backbone flexibility increases the native energy gap. (A) Examples of energy landscapes for individual proteins result-

ing from fixed bond length and angle relaxation (left) and from bond angle relaxation (right). The y-axis is the Rosetta energy

normalized by rescaling the energies such that the 95th percentile and fifth percentile fall on 1 and 0, respectively. The x-axis is

the RMSD to the native structure. The discrimination measure is provided at the bottom right of each panel; the better the

energy funnel, the more negative the value. For these four proteins, the energy gap between the native structure and far from

native structures increases with flexible bond relaxation. (B) Illustration of the discrimination calculation. The discrimination mea-

sure is the average of energy gaps sampled at seven points on the landscape. The energy gap for each division is computed

by finding the difference between the lowest energy structure to the left of the division and the lowest energy structure to the

right. The red diamonds represent the lowest energy structure in each bin. In this case, the lowest energy structure to the left

of each division will always be the far-left structure. (C) Backbone flexibility increases the native energy gap across the 82 pro-

tein benchmark set. For each value of the bond constraint scaling factor on the x-axis, 900 conformations for each of the 82

proteins were relaxed five times. The discrimination measure was computed from the resulting 4500 structures as outlined in

panel B, and the values for the 82 proteins were averaged. More negative values indicate larger native energy gaps. At values

of the scaling factor less than 0.37 (the lowest value shown on the x-axis) the bonded geometry begins to deviate from that

observed in native crystal structures (data not shown). The ideal geometry calculations are not influenced by the scaling factor;

the small amount of variation at different values of the scaling factor indicates the amount of noise in the averages. The results

for all three protocols converge at high values of the scaling factors as expected since the backbone geometry is near ideal

even for the flexible protocols.
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energy gap overall, but increased the discrimination

score as the constraints increased. Allowing both

angles and lengths to vary performed worse than

keeping bond lengths fixed [Fig. 3(A)]. The poorer

discrimination with increased constraint weight for

the flexible bond length protocols in Fig 3(B) is

likely due to the high bond length spring constants

causing the quasi Newton optimization algorithm to

take shorter steps and increasing the convergence

time.10

As described above, because of the computa-

tional cost associated with optimizing large numbers

of structures, the above comparisons of representa-

tions involved relaxation of large numbers of already

generated models. For this purpose we used Rosetta

FastRelax, an efficient local optimization procedure.6

However, it is formally possible that new minima

exist when the additional DOFs are added, but local

optimization fails to identify them. Therefore, we

performed more extensive global optimization on a

subset of targets to see if new local minima emerged

due to the additional model flexibility. For 10 of the

targets from the original test set, we used the large-

scale parallel loop hash (PLS) sampling procedure11

starting from 200 input structures per target. Either

standard ideal geometry FastRelax or FastRelax

using flexible bond geometry was used for local opti-

mization in the PLS protocol. As shown in Figure 4,

allowing relaxation of backbone-bonded geometry

again increased the energy gap between native and

non-native structures. Hence, it is unlikely that

relaxing bonded geometry creates new minima with

energies comparable to the native structure.

As a final test of the importance of flexible bond

angles in protein structure modeling, we compared

X-ray structure refinement with ideal backbone

geometry to refinement with flexible backbone geom-

etry. X-ray refinement has recently been imple-

mented in Rosetta,12 and hence this comparison

could be readily made using the alternative minimi-

zation protocols described above. We refined ideal-

ized (bond geometries set to their ideal values) high-

resolution structures against truncated (to 4 Å)

reciprocal space crystal diffraction data; the trunca-

tion was to a resolution where bond nonideality is

not specified by the data alone. Idealizing structures

provides a common starting point and helps pinpoint

Figure 3. Backbone angle flexibility is the dominant contributor to the increased native energy gap conferred by bonded geom-

etry optimization. (A) The benchmark set calculations described in Figure 1(C) were repeated allowing different subsets of

angles to relax during internal coordinate minimization. Keeping bond lengths fixed but allowing all angles to vary led to better

discrimination than varying all bond lengths and angles. Most of this improvement resulted from varying all the backbone

angles; minimization of sidechain angles or the tau angle (N-Ca-C’) had a smaller effect. (B) Varying bond lengths show no

effect on discrimination except for a slight decrease in performance at higher weights likely caused by increased convergence

time due to shorter steps during quasi Newton optimization.

Figure 4. The increase in energy gap with flexible bond optimi-

zation is observed even with extensive sampling. Large-scale

parallel loophash sampling (PLS) optimization was performed

for 10 proteins, and the discrimination score was computed.

The increase in energy gap with bond flexibility is similar to that

observed with more local optimization in Figure 1.
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the effect of adding bond angle flexibility. The R-free

values after refinement with flexible bond angle

optimization were consistently lower than after

refinement with ideal bond angle optimization (Fig.

5), further highlighting the importance of flexible

bond angles in defining native structures.

Having determined that flexible bond angles -

particularly backbone angles – yield energy land-

scapes with the native structure in a deeper mini-

mum, we proceeded to experiment with the

FastRelax protocol to identify the most efficient local

optimization protocol. Figure 6 shows the results on

several different nonideal FastRelax variants. 270

decoys were optimized under each protocol; the aver-

age energy over the set is plotted as a function of

average protocol run time. The first observation is

that protocols making use of Cartesian optimization

were more effective in reducing the energy than pro-

tocols optimizing internal coordinates alone. Of the

internal coordinate optimization protocols, lowest

energies were obtained when all angles but no

lengths were allowed to deviate during refinement.

Finally, the lowest overall energies were observed by

running a two phase protocol, where the structure

was first optimized in internal coordinates with

bond lengths fixed, then optimized in Cartesian

space. This combined protocol performs considerably

better than either internal coordinate torsion angle

optimization or Cartesian optimization alone (com-

pare Fig. 6 left, red circles with Fig. 6 open black).

The improved performance of the protocol with

fixed bond length internal coordinate optimization

followed by Cartesian optimization may be rational-

ized as follows. In the initial phases of optimization,

restricting DOFs has the advantage of allowing

exploration further in conformational space and

avoiding trapping in local minima not accessible

with more ideal geometry. Restricting bond lengths

has the further advantage of speeding up the

internal coordinate optimization. On the other hand,

Cartesian minimization is likely to be much more

effective in finding the lowest energy structure in

the immediate neighborhood and hence is effective

at the late stages of optimization.

Allowing bond flexibility during refinement

increases running time somewhat: our combined

refinement protocol takes approximately 110 s for a

Figure 5. Crystallographic refinement with flexible bonds gives a better fit to low-resolution data than fixed bond refinement.

(A) In all but one case, flexible refinement yields a lower average R free. (B) Comparisons of models for 2rk6 after ideal (blue)

and flexible (green) refinement. The map is built from high-resolution data - not the low-resolution data used for refinement - to

better represent the improved fit.

Figure 6. Combined internal coordinate and Cartesian relax

is more effective than either one alone. A representative set

of starting models was relaxed using different protocols (col-

ors) and the average energy over all calculations (y-axis) was

determined as a function of run time (x-axis). At 200 s (black

vertical bar), the minimization method within the relax proto-

col was changed as indicated in the inset box (for example,

ideal-Cartesian indicates that the first 200 s used ideal bond

internal coordinate minimization, and the second 200 s, Car-

tesian minimization (all DOFs variable). The best performance

(lowest energies after 400 s) was obtained using protocols

that kept bond lengths fixed in the first phase and switched

to Cartesian minimization in the second phase.
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100 residue protein compared to about 40 s for the

fully ideal protocol. Most of the runtime increase is

due to Cartesian optimization, where the large bond

length spring constants require significantly more

minimization cycles for convergence.

Discussion

Bond angle variation is clearly evident in protein

structures; indeed, bond angles in high-resolution

crystallographic structures deviate from ideal values

more than in lower-resolution structures.13 This has

been borne out in crystallographic refinement

experiments,14 but the effects of bond length and

angle flexibility on the full energy landscape have

not, to our knowledge, previously been explored. In

this study, we show that incorporating bond angle

flexibility significantly increases the energy gap

between native and non-native conformations, and

improves crystallographic refinement at low resolu-

tion. The increase in the magnitude of the energy

gap separating native and non-native structures

suggests that the former indeed take advantage of

the small amount of flexibility inherent in atomic

bonds to obtain better packing and overall ener-

getics. When angles are constrained to ideal values,

interatomic interactions, particularly Lennard-Jones

and hydrogen-bonding interactions, cannot be as

finely optimized. The energy of the native structure

appears to suffer more from this limitation than

non-native structures, likely because of its higher

packing density.

Most of the improvement results from freeing

backbone angles. Slight angular changes in back-

bone bonds affect the entire chain position. Allowing

bond lengths to change has relatively little effect,

likely because the overall perturbation to the chain

is much smaller.

It is notable that local optimization protocols

combining internal coordinate and Cartesian optimi-

zation perform considerably better than either one

alone in finding lower energy minima. Although

Cartesian optimization reaches much lower energies

than internal coordinate optimization alone, lower

energies are obtained when Cartesian optimization

is preceded by internal coordinate optimization of

torsion angles, with or without bond angle optimiza-

tion. Internal coordinate minimization is better able

to bypass local minima traps early in optimization;

Cartesian relax can then further refine the interac-

tions locally (without suffering from lever effects

preventing further relaxation). The improved per-

formance of the combined protocol could also derive

in part from a greater effectiveness of internal coor-

dinate minimization at optimizing bond torsional

energies, and Cartesian space minimization, at opti-

mizing atom–atom interactions (in internal coordi-

nates, optimizing the distance between atoms close

in space but distant along the sequence requires

simultaneous variation of the many DOFs between

them).

It is tempting to speculate, by analogy to our

simulation results, that bond angle distortions occur

late in protein folding to optimize interatomic interac-

tions in the native structure and that this contributes

significantly to the thermodynamic stability of the

native state. We are not aware of any experimental

data on the magnitude of deviations from ideality in

unfolded states and protein folding intermediates,

but it is plausible that only in the native structure is

there sufficient packing density for the cost of bond

angle distortions to be more than compensated by

decreases in atom–atom interaction energy.

Methods

To assess the accuracy of different dimensionality

protein representations, we focus on the energy gap

between the native and non-native conformations;

for folding to occur, the energy of the native struc-

ture must be much lower than non-native conforma-

tions. Identifying the lowest energy non-native

conformations from scratch for large numbers of

alternative representations is computationally

intractable. Therefore, we initially generated a set of

low energy structures spanning conformational

space using a large-scale space search procedure.15

The number of representatives at each RMSD dis-

tance from the native structure was normalized to

prevent overrepresentation of any particular area of

conformational space. The resulting structures are

densely packed and energetically competitive confor-

mations (or “decoys”) of the native sequence [Fig.

2(A)]. Changes in model representation and local

optimization methods are then evaluated by mini-

mizing each precalculated structure in the new force

field, allowing it to descend to its new local mini-

mum. The difference in energy between models

inside and outside of the native energy minimum is

then evaluated: model representations leading to

larger energy gaps (normalized based on the spread

in energies among the models) are considered better

than those with smaller gaps [Fig. 2(B)].

We apply this approach to comparing fixed and

flexible bond representations in the context of the

Rosetta force field. Rosetta modeling calculations

generally involve an internal coordinate representa-

tion based on a “fold tree”.16 The standard fold tree

only allows backbone and sidechain torsions (for

rotamers) as DOFs during minimization, bond

angles, and lengths are kept fixed. Flexible bond

geometry was implemented by allowing bond lengths

and angles to vary in the internal coordinate space

optimization. The implementation allows selective

restrictions of subsets of DOFs, for example, letting

only the backbone angles vary.

We compared internal coordinate optimization

to Cartesian-space optimization (Fig. 1); in the
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former, minimization is guided by gradients with

respect to bond and torsion geometries; in the latter,

by gradients with respect to the (x, y, z) coordinates

of each atom. By definition, Cartesian-space minimi-

zation permits flexible bonds and planarity. For both

representations, parameters for harmonic bond

length and angle force constants were taken from

CHARMM32.2 In addition, constraints using

CHARMM32 parameterization were also added to

control improper torsions in Cartesian space. A

global weight was used to control the scaling of the

bonded versus non-bonded terms. MolProbity was

used to validate bond angle and length distributions

to ensure structure predictions were physically

realistic.17

Local optimization protocol
To compare fixed ideal internal coordinate minimiza-

tion, flexible internal coordinate minimization, and

Cartesian minimization, the standard Rosetta local

optimization protocol – FastRelax18 - was adapted to

optionally allow minimization of covalent DOFs

(bond angles and lengths), and minimization in Car-

tesian space. We also modified the FastRelax proto-

col to perform first internal coordinate optimization,

which may have a larger radius of convergence,7

and then Cartesian minimization.

The original FastRelax protocol uses multiple

iterations of repulsive weight annealing with combi-

natorial rotamer optimization and minimization to

optimize energies (ramp-repack-min). There are five

cycles each consisting of four iterations of ramp-

repack-min starting with repulsive at 2% of full

strength, followed by 25, 55, and 100% successively.

Only minimization permits flexible bonds; the

rotamer set used in repacking has ideal bonds.

Fixed ideal internal coordinate relax uses the

original FastRelax protocol described above. Flexible

internal coordinate relax uses the same protocol, but

frees the bond angle DOFs during minimization.

Cartesian relax starts with three rounds of flexible

angle internal coordinate minimization and then

performs the remaining two rounds of FastRelax in

Cartesian space. Command lines are provided in the

Supplemental Materials.

Discrimination benchmark
The benchmark we use to evaluate the discrimina-

tory power of the Rosetta force field consists of 82

small globular proteins15,19 covering a diverse set of

topologies. All proteins are monomers between 55

and 224 residues in length, have crystal data with

<2 Å resolution, and with crystal-stabilized regions

visually identified and removed. For each protein,

40,000–200,000 decoys were generated using biased

and unbiased ab-initio sampling runs15 followed by

extensive loop building and relaxation using the

Rosetta full-atom energy function and PLS.11

Additional PLS runs were seeded with the native

structure to further increase sampling density near

the native state. The resulting decoy structure sets

comprise many competitive low-energy non-native

conformations, sometimes lower in energy than

close-to-native structures. All these conformations

were pooled and 1000 representative low-energy

structures from each protein were chosen to evenly

cover the range of possible RMS values.

To test each set of parameters and flexibility

settings, we ran five FastRelax trajectories per start-

ing model, producing 369,000 decoys in total. This

short refinement balances the need to let each struc-

ture optimize against the new parameter set and

computational feasibility. Each full test of a parame-

ter set consumed �50,000 CPU h.

Discrimination measure
To quantify the discriminatory ability of a parameter

set we used the following procedure, given a large

set of structures and their energies. First, energy

values are normalized by rescaling the energies such

that the fifth percentile and 95th percentile energies

take the values of 0 and 1, respectively. Then, for

each protein a separate discrimination score s is cal-

culated [Fig. 2(B)] at seven different RMS values

r 5 [1.0, 1.5, 2.0, 2.5, 3.0, 4.0, 6.0], by taking the nor-

malized energy difference of the lowest-energy struc-

ture below and above the dividing line at each r.

S5
X

r2 1;1:5;2;2:5;3;4;6f g
min

i;RMS ið Þ2½0;r�
Ei2 min

i;RMS ið Þ2ðr;1�
Ei

The total discrimination score is then calculated

as the average score over all proteins and all values of

r. The score is constructed such as to capture changes

in discrimination at various resolutions, with a lower

score indicating better overall discrimination.

Backbone conformational sampling
To further assess discrimination under more aggres-

sive search, we used the (PLS)11 on a subset of the

82 proteins used above. In each iteration of PLS, a

set of input structures are selected and local struc-

ture segments are randomly replaced with segments

found in the PDB. Variants are relaxed and the low-

est energy variants are accumulated and filtered by

a diversity criterion. PLS is able to generate large

backbone conformational changes and samples a sig-

nificant portion of conformational space around a

given topology.

While PLS is a powerful sampling protocol, it

was not computationally feasible to run it for all 82

proteins and all parameter sets. Instead, 10 proteins

without disulfide bonds (which complicate topology

sampling) were randomly selected from the set. One

PLS run for each structure was performed, starting
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with 200 low-energy decoys per protein, evenly

selected across the range of possible RMS values

and excluding any decoys created from native-biased

ab-initio algorithms. Each run sampled with 8192

cores for 6 h on the Intrepid Blue Gene/P supercom-

puter at Argonne National Laboratory. Upon conclu-

sion of the runs, the energy landscape was well

covered over a large range of RMS values.

Crystallographic refinement

A set of eight crystal structures that had been solved

using high-resolution crystal data, along with their

deposited structure factors, was chosen from the

PDB. The structures were “idealized” by forcing

ideal geometry and minimizing with constraints on

the atom positions of the deposited structure, result-

ing in a model with ideal geometry and low RMS

deviation (generally less than 0.2 Å) from the origi-

nal model. The crystallographic data was then trun-

cated to 4 Å - a resolution too low for the data to

identify deviations from ideal geometry - and the

structures were refined against the truncated data

using Rosetta-Phenix refinement in internal coordi-

nates.12 Two separate refinement trajectories were

run: one where bond geometry was allowed to devi-

ate from ideality, and one where it was not. After

both refinements, the free R factor (using the reflec-

tions marked as free in the deposited structure) of

the ideal and nonideal models was calculated.

Optimizing fastrelax for flexible geometry

To optimize the FastRelax protocol for the larger

search space and dual representations, we used a

small benchmark of 270 compact decoys, generated

by the Rosetta ab-initio protocol described earlier,15

with randomly selected sidechain conformations.

Because the centroid structures were minimized

with a different energy function than used for full-

atom minimization (which is used by FastRelax), the

comparison is not biased by the starting minima of

the benchmark set. For each FastRelax cycle, we

computed the average final energy and elapsed time

from start. The relax protocols were performed for

400 s. The weights on the energy function score

terms were the default Rosetta (score12) weights

(ref) with the addition of the cart_bonded global

bonded term (set to a weight of 0.5). We tested a

variety of different FastRelax protocols utilizing var-

ious combinations of fixed internal coordinate, flexi-

ble internal coordinate, and Cartesian minimization.
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