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Abstract

Eukaryotic transmembrane helical (TMH) proteins perform a wide diversity of critical cellular functions, but remain
structurally largely uncharacterized and their high-resolution structure prediction is currently hindered by the lack of close
structural homologues. To address this problem, we present a novel and generic method for accurately modeling large TMH
protein structures from distant homologues exhibiting distinct loop and TMH conformations. Models of the adenosine A2AR
and chemokine CXCR4 receptors were first ranked in GPCR-DOCK blind prediction contests in the receptor structure
accuracy category. In a benchmark of 50 TMH protein homolog pairs of diverse topology (from 5 to 12 TMHs), size (from 183
to 420 residues) and sequence identity (from 15% to 70%), the method improves most starting templates, and achieves
near-atomic accuracy prediction of membrane-embedded regions. Unlike starting templates, the models are of suitable
quality for computer-based protein engineering: redesigned models and redesigned X-ray structures exhibit very similar
native interactions. The method should prove useful for the atom-level modeling and design of a large fraction of
structurally uncharacterized TMH proteins from a wide range of structural homologues.
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Introduction

Membrane proteins perform a wide diversity of critical

functions in living cells but are also involved in serious diseases

and represent more than 60% of current drug targets [1,2].

Despite recent tremendous progress in membrane protein

expression, biochemistry and X-ray crystallography, eukaryotic

membrane protein structures remain difficult to characterize

experimentally [3]. The lack of high-resolution structures hinders

the design of more effective therapeutics and of receptors with

novel function for systems/synthetic biology applications which

rely on atomic-resolution information [4]. The high-resolution

prediction of membrane protein structures is therefore an

important alternative approach but remains a major challenge in

absence of close structural homologues [5]. Although numerous

methods have been developed to model G protein-coupled

receptor (GPCR) structures [6–9], much fewer techniques have

been developed and applied to the entire class of alpha helical

membrane proteins. Current state-of-the-art de novo structure

prediction techniques of alpha helical membrane proteins can

generate low-resolution models with native-like topologies [10–12]

and, despite some insightful applications [13], most current

comparative modeling methods do not significantly improve

starting templates [14,15]. The main structural differences

between distant homolog transmembrane alpha-helical (TMH)

proteins are found in loop regions and in helical conformations

shaping TMH core structures and ligand/effector binding sites.

While the problem of rebuilding protein loops has been extensively

studied [16,17], the accurate modeling of membrane protein

structures from distant homologues diverging in both loop and

TMH core regions is a remaining unsolved challenge [5]. The

origins of TMH conformational diversity are multiple and range

from the presence of localized sequence-specific distortions (e.g.

Proline-induced kinks) to local bends and global tilts stabilized by

specific tertiary contacts [18–23]. Many of these features cannot

be accurately predicted from sequence information alone and

requires the explicit modeling of atom-level physical interactions

stabilizing these structures [18–20,24]. The large size of TM

proteins and associated number of degrees of freedom combined

with the ruggedness of the all-atom energy landscape make their

prediction at atomic resolution computationally intractable using

an exhaustive conformational search in torsional angle space.

To address this problem, we have developed a general modeling

strategy based on efficient sampling techniques of alternative

TMH structures to reconstruct both TMH core and loop regions

from distant structural homologues. The method was stringently

validated in two blind predictions where the generated models

were top-ranked [14,15] and in a large benchmark dominated by

pairs of membrane protein distant homologues where starting
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templates were almost all significantly improved. Computational

design calculations suggest that the models should be of suitable

accuracy for rational protein engineering applications.

Results

Approach
As shown in Fig. 1, multiple sequence alignments using Hidden

Markov Model (HMM)-based techniques [25] are first performed

to identify structural homologues that best align with the target

sequence. The quality of the alignment in the TMH regions leads

to two different model rebuilding strategies: 1) If the alignment in

the TMH regions does not exhibit significant gaps, if the positions

of coils or residues promoting local distortions are identical and if

TMHs are predicted to have similar length, then target and

template TMH structures are likely very similar (Methods). In

this situation, the template TMH structure is first kept fixed onto

which loops diverging between target and template are recon-

structed de novo using fragment insertion techniques [10,16]. The

reconstructed models are then refined at the all-atom level [24]

(Fig. 1). 2) If one of the above-mentioned conditions is not

satisfied however, target and template TMH structures may differ

significantly and the target TMH region is also reconstructed as

described below (Fig. 1). TMH structures mostly sit in the

hydrophobic environment of the lipid membrane disfavoring any

unsatisfied polar atom. Therefore, we reasoned that, except in

local bends or kinked regions where hydrogen-bond networks may

be partially disrupted, most TMH regions to be rebuilt adopt

helical conformations. Previous work also suggests that most bent

helices can be approximated by straight TMH fragments away

from the local distortion [24] which can adopt diverse structures

(from a 310 turn to a p helix) [18,19,23]. To efficiently identify

alternative low-energy TMH conformations, each TMH fragment

away from local predicted bends (that usually span from 4 to 6

residues) is first modeled as a rigid-body helix and its conformation

optimized in a low-resolution search sampling helical rigid-body

degrees of freedom (see Method). This low-resolution search

averages out side-chain conformations, effectively flattening the

conformational free energy landscape and allows the rapid

identification of low-energy TMH conformations [10] with

alternative interhelical and/or kink angles. Loop and local TMH

regions around bends or kinks are then rebuilt using fragment

insertion techniques and the fully-reconstructed low-resolution

structures are refined at all-atom to identify the lowest-energy

native-like structures. At this stage, global deformations of TMH

stabilized by short-range atom-level tertiary interactions can be

identified and selected by energy [24]. To avoid sampling regions

of the conformational space unlikely to be occupied by the peptide

chain, distance constraints are applied to the template structure at

pairs of residues in proximity and conserved in both target and

template sequences (Methods).

Only distant structural homologs are available for a large
fraction of human transmembrane helical proteins

To assess the significance of our technique developed to model

membrane proteins from distant homologs, we analyzed the space

of structural homologs available to all human TMH proteins using

HHpred [25–27], a toolkit for searching and aligning query

sequences with sequences from existing structures. The resultant

HHpred alignments were filtered by a range of percent sequence

identity thresholds (i.e. of homolog hit versus target) and percent

coverages (i.e. of total length of target sequence) of 90%, 75%, 60%

or 50%. As shown in Fig. S1A, the percentage of human multi-pass

TMH proteins sharing 15–25%, 25–35% and .35% sequence

identity with their best structural homolog hit is 43%, 12% and

12%, respectively. Similar distributions were obtained for datasets

including also human single-pass TMH proteins or consisting of

human multi-pass TMH proteins truncated to their TM domains

(Fig. S1C,D). These results indicate that only distant structural

homologs are currently available for a large fraction of human

TMH proteins. Moreover, as shown in Fig. S1B, only one single

distant structural homolog is found for a large fraction of these

TMH proteins. These results justify our approach and led us to test

our technique on a benchmark where membrane protein structures

were primarily modeled from single distant structural homologs.

Submitted models of the adenosine receptor (A2AR) and
chemokine receptor (CXCR4) were first-ranked in blind
prediction GPCR-DOCK contests in the receptor structure
accuracy category

The technique was tested in two challenging blind predictions of

membrane receptor structures, i.e. GPCR-DOCK 2008 for the

adenosine receptor (A2AR) [15] and GPCR-DOCK 2010 for the

chemokine receptor (CXCR4) [14]. The closest homolog template

to A2AR was the beta 1 adrenergic (B1AR) receptor structure [28]

sharing 32% sequence identity and exhibiting excellent sequence

alignment in the TM region with A2AR. Therefore, TMH

remodeling of the template structure was not required. A total of

206 models were submitted by the participants but very few

showed significant improvements compared to the initial template

structure. Among the top 10 models for both receptor and ligand

binding prediction accuracy, one of our submitted models ranked

co-first and first for the receptor prediction accuracy over the full

length (i.e. 283 residues) and TMH region (i.e. 214 residues),

respectively (the reported model from Costanzi had a lower ‘‘full-

length’’ RMSD but did not include the entire long ECL2 loop, see

Table 1 in [15]). An additional model submitted without ligand

(submission 3600_8, Supplementary information in [15]) was even

closer to the target (Ca RMSD of 2.9 Å over 283 residues)

and ranked first among all submitted models for both TMH and

full-length structures with a Z-score of 1.51. For CXCR4,

Author Summary

Membrane proteins perform crucial cellular functions and
can be involved in serious diseases but remain difficult to
study experimentally. Hence, high-resolution membrane
protein structures are scarce which hinders the design of
selective therapeutics and of receptors with novel function
for systems/synthetic biology applications. The computa-
tional modeling of membrane protein structures repre-
sents an important alternative approach but, to achieve
high accuracy, usually requires structural information from
closely related proteins currently unavailable for most
membrane proteins. To address this limitation, we have
developed a novel method to predict membrane protein
structures from the structures of non-closely related
proteins that differ both in loop and transmembrane
regions. Using this approach, we show that a large
diversity of membrane proteins can be reconstructed at
a level of accuracy suitable for computer-based protein
engineering applications. Because requiring information
from a single distant homolog only, we expect that around
60% of human membrane proteins can reliably be
modeled using our approach, thereby allowing precise
structure/function studies on a large fraction of structurally
uncharacterized membrane proteins.

Membrane Protein Modeling from Remote Homologues
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although HHpred identified the beta 2 adrenergic receptor

(B2AR) as the best aligned structural homolog, B2AR is a distant

homolog sharing only 22% sequence identity with CXCR4 [29]

and its second TMH did not align well with the target near a

proline-inducing kink. The C-terminal part of TMH2 starting

from the kink and the loop structures were therefore remodeled,

and 5 low-energy models with docked ligand were submitted. One

model was ranked first for the accuracy of the receptor structure

among all the 158 models submitted by the participants for the two

CXCR4 structures (Z-score = 1.72) and 2 additional ones were

ranked second and third for the prediction accuracy of the

CXCR4/IT1t structure (Z-scores of 1.36 and 1.24) [14]. Both

blind predictions demonstrate that our technique significantly

improved starting templates and generated models exhibiting

several structural features closer to the target X-ray structures than

to the starting template. For example, the TMH shifts in the

A2AR structure from B1AR (Fig. 2A), the local kink in TMH2 of

CXCR4 (Fig. 3A–C) and the 27 residues long extracellular loop 3

of CXCR4 (residues G220-I246) (Fig. 4A) were predicted quite

accurately. Although the conformation of the 16 residues long

partially disordered extracellular loop 2 (residues A174-E179,

R183- N192) was not predicted with near-atomic accuracy, its

conformation was closer to the target CXCR4 than to the starting

template (Fig. 4F) and was the most accurate prediction for that

region among all submitted models [14]. We also attempted the

modeling of D3DR but, since close homologs (sequence identity .

30%) were available, the main interest for this target was not

receptor modeling but ligand docking which is outside the scope of

the present study. With a Z-score of 0.41, our best model of D3DR

ranked within the top 35% of the population of models. However,

the accuracy of the models may not reflect the ability of our

method to model the receptor because the ICL3 loop was

mistakenly not rebuilt (i.e. the polypeptide chain was not

connected between TMH5 and TMH6 due to the presence of

T4 lysozyme in the B2AR template), preventing an optimal all-

atom refinement of the receptor structure.

Starting templates are significantly improved in a
benchmark dominated by distant homolog membrane
protein structure pairs

To further test whether our method consistently improves

homolog templates, we selected a representative dataset of 50

membrane protein structure pairs exhibiting a wide diversity of

sequence identity (from 15% to 70%), length (from 183 to 420

residues and topology (from 5 to 12 TMHs) (Methods, Table
S1). In this dataset, 28 pairs were GPCRs (class A or B), 22 pairs

were non-GPCRs and 37 pairs were distant homologs sharing not

more than 25% of their sequences. In each pair, one structure was

assigned as the target to be modeled and the other one as the

Figure 1. General framework for the high-resolution modeling of membrane protein structures from structural homologues. A.
Sequence alignment between target and template sequences in a TMH region revealing gaps and potentially different proline-induced distortion
patterns in which case TMH core structure is rebuilt by sampling alternative rigid-body conformations of all or selected TMHs (Methods) before loops
are rebuilt de novo and the fully-reconstructed structure is refined at all-atom (right). If no gaps and identical distortion patterns are identified
between template and target, no TMH rebuilding is performed and loop rebuilding+refinement protocol is performed (left). B. Schematic
representation of the sampling of kinked TMH conformations. A kinked helix is defined by 3 regions: An N- and C-terminal helix fragment separated
by a distorted bend region (typically 4 to 6 residues N-terminal to a Proline for example) which can adopt a large diversity of local structures (310 to p
turns) and is modeled de novo using fragment insertion techniques. Each helix fragment is treated as a rigid-body and defined by a helical axis (m for
‘‘moveable’’ and f for ‘‘fixed’’ defining the reference state). The m helix is moved with regard to the f helix according to the following degrees of
freedom: 1) Distance between the C-terminal position of the m helix and the N-terminal position of the f helix (dotted red line allowing to sample a
hemispherical surface shown in red). 2) Tilt angle between the m and f vectors sampled so that the projection of the N-terminal position of the m
helix (black dotted line) on a plane orthogonal to the f axis and crossing the proline ring preferentially occupies the semicircle (grey) away from the
proline ring (see methods).
doi:10.1371/journal.pcbi.1003636.g001

Membrane Protein Modeling from Remote Homologues
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starting template. 36 pairs exhibited poor sequence alignment for

at least one TMH and required both TMH and loop rebuilding

prior to all-atom refinement. Specifically, 21 GPCR pairs required

sampling alternative conformation of one distorted TMH (Table
S2), 15 non-GPCR pairs required at least one TMH to be rebuilt

and the Lac permease/EmrD pair sharing only 15% sequence

identity required all TMHs to be simultaneously rebuilt (Table
S1). The models were selected by all-atom energy and clustering

(Methods). The quality of the predictions was analyzed for their

accuracy over the full-length, TMH structures and individual

distorted TMH conformations. They were compared to the

starting template and to models generated with the same input

information (e.g. alignment, template structure) using 1. ME-

DELLER [30], a comparative modeling technique developed for

membrane proteins, 2. the widely used MODELLER compara-

tive modeling method [31] and 3. I-TASSER, a widely-used

protein structure prediction server [32,33]. As shown in Fig. 5
and Table S1, our method significantly improves starting

templates for all but 4 protein pairs over the full length structure

and for all but 3 protein pairs over the TMH regions. The average

improvements as measured by GDT-HA over the entire dataset

(i.e. High Accuracy Geometric Distance Test measuring similarity

between two protein structures [34]) are 0.0760.04 and

0.1060.05 for the full length structure and the TMH regions,

respectively, and are statistically significant (p values ,0.005 and

,0.0001, respectively, as measured by student t-test). These

improvements are particularly noticeable in the TMH regions

where the percentage of residues lying within 1 Å of the native

structure is increased by 17610% thereby decreasing the Ca
RMSD from 2.160.7 to 1.760.7 Å in these regions. In contrast,

the models generated by MEDELLER, MODELLER and I-

TASSER remain very close to the starting templates and do not

exhibit significant improvements as measured by GDT-HA over

TMH regions: 0.00260.01, 20.00660.05 and 20.0160.05,

respectively (p values .0.5; Fig. 5, Table S1).

The absence of improvements in the TMH regions was

observed for 3 close homolog pairs: 3PBL from 3EML, 4EJ4

from 3RZE and 2IC8 from 2NR9. For 3PBL from 3EML, the

template is already very close to the target structure (Ca
RMSD = 1.1 Å). At this level of structural similarity, inaccuracies

in the energy function and the lack of explicit modeling of buried

water molecules, lipids and ligands in the current method may

impede further significant improvements.

Distorted TMHs are modeled with atomic accuracy
Table S2 summarizes the local improvements on the distorted

TMH2, which was rebuilt in 21 GPCR pairs because of the poor

Figure 2. Accurate prediction of TMH structures. Superposition of selected models, templates and native structures are in magenta, cyan and
blue, respectively with backbone in cartoon and side-chains in stick. A. Blind prediction of adenosine A2A receptor (3EML) from the beta1 adrenergic
receptor (2VT4). B, C. Modeling of the beta2 adrenergic receptor (2RH1) from the chemokine CXCR4 receptor (3ODU). D. Modeling of the beta2
adrenergic receptor (2RH1) from bovine rhodopsin (1U19). E. Modeling of the Ammonia Channel AmtB (1U7G) from Rhesus protein Rh50 (3B9W). F.
Modeling of ECF-type riboflavin transporter (3P5N) from ECF-type ABC transporter thiamine-specific S-component ThiT (3RLB). G. Modeling of BtuCD
protein (1L7V) from (ATP)-binding cassette ABC transporter (2NQ2).
doi:10.1371/journal.pcbi.1003636.g002

Membrane Protein Modeling from Remote Homologues
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sequence alignment between the target and the template in that

region. The overall conformation of the kinked TMH2 was

improved for all but two pairs as measured by GDT-HA which

increased from 0.7960.05 to 0.8660.06 and by Ca RMSD which

decreased from 1.3360.42 to 0.8460.33 Å. Importantly, as

shown for 3ODU from 2RH1 (Fig. 3A–C) and for 3EML from

1U19 (Fig. 3D–F) and in Table S2, the precise conformation of

the kinked regions that were rebuilt de novo was also improved as

measured by the differences in dihedral angles between template

or model and native structures. When averaged over the bend (i.e.

5 residues, Methods), these differences decreased from 26613u
and 34619u to 1567u and 14610u, for phi and psi backbone

dihedral angles, respectively.

Modeling the unusually distorted TMH2 of squid rhodopsin

(2Z73) [35] was challenging. Proline 90 perturbs and partially

breaks the hydrogen bond network between the backbone

nitrogen and carbonyl groups of residues 85 to 90 which form a

wide p turn splitting TMH2 in two helical fragments. In addition

to the wide p turn, the relative position of these helical fragments is

also unusual. Unlike many kinked helices [21], the interhelical

(kink) angle is only 21 degrees and the C-terminal helix is displaced

outside of the TMH core compared to the N-terminal helix, a

conformation stabilized by the beta-strand forming an extracellu-

lar ‘‘lid’’ over the retinal binding site. In absence of this loop region

during TMH rebuilding, the native conformation of the C-

terminal helix is not stabilized by a large number of physical

contacts with the rest of the TMH core making the selection of

that conformation difficult by energy alone. Although our protocol

improved starting templates overall, we expect that rebuilding

TMH core and loop regions simultaneously may become a more

effective strategy for helical conformation stabilized by loop

regions and will be explored in future work.

The largest improvements are mainly observed for the
most distant homolog templates

The largest improvements in full length structure and TMH

regions (defined as GDT-HA increases $0.12) were mainly

observed for distant homologues and include both GPCRs and

non-GPCRs: 1U19 from 3ODU, 2RH1 from 1U19, 2CFQ from

2GFP and 3P5N from 3RLB. GDT-HA increases $0.12 in the

TMH region were also mainly observed for distant homologs, such

as 1U19 from 2Z73 or 3EML, 2RH1 from 2Z73 or 3ODU, 2Z73

from 3ODU, 3PBL from 3ODU, 3V2Y from 3RZE, 3EML from

3UON, 1U7G from 3B9W, 3P5N from 4DVE, 3V5U from 4KPP

and 3GD8 from 3KLY.

Within the GPCR targets, modeling the beta2 adrenergic

receptor (2RH1) from bovine rhodopsin (1U19) led to the largest

improvements in GDT-HA: 0.13 and 0.19 over the full-length and

TM structures, respectively. Although these 2 GPCRs share only

20% sequence identity in the modeled regions, 73% of the model

residues lie within 1 Å of the native TM structures compared to

only 28% for the starting template and display very similar side-

chain conformations compared to in the native structure (Table
S1, Fig. 2B,C). Most of the residues not predicted at atomic

resolution belong to the extracellular part of the first TMH which,

unlike in 1U19, is poorly packed to the rest of the TM structure in

the B2AR crystal structure and is difficult to predict accurately.

Within the non-GPCR targets, the largest improvements in GDT-

HA were observed for the ECF-type riboflavin transporter (3P5N)

from thiamine-specific S-component ThiT from an ECF-type ABC

transporter (3RLB). Although these 2 transporters share only 15%

sequence identity in the modeled regions, the overall fold is

conserved. Three TMHs poorly aligned with the template were

rebuilt leading to 0.14 and 0.16 improvements in GDT-HA over the

full-length and TM structures, respectively. In contrast to the

Figure 3. Accurate prediction of distorted helical structures. Superposition of selected models, templates and native structures are in
magenta, cyan and blue, respectively A–C. Blind prediction of CXCR4 from B2AR. A, B. Cartoon representations of TMH2. C. Deviation in backbone
dihedral angles (phi, triangles; psi, circles) between model (blue) or template (red) and native structure over the local bend of TMH2 from Pro 92 to
Phe 87. D–F. Modeling of the adenosine A2A receptor from bovine rhodopsin. D, E. Cartoon representations of TMH2. F. Deviation in backbone
dihedral angles (phi, triangles; psi, circles) between model (blue) or template (red) and native structure over the local bend of TMH2 from Pro 58 to
Gly 53.
doi:10.1371/journal.pcbi.1003636.g003

Membrane Protein Modeling from Remote Homologues
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template, most of the TMH region in the selected Rosetta model is

superimposable to that of the target allowing a large fraction of side-

chains to adopt similar packing than in the native structure (Fig. 2F).

Similar improvements of starting templates leading to close to atomic

accuracy backbone and near-native side-chain conformation pre-

dictions in the TM region were observed for other distant homolog

pairs such as 2RH1 from CXCR4 (Ca RMSD of 1.7 Å, Fig. 2D)

and 1U7G from 3B9W (Ca RMSD of 1.1 Å, Fig. 2E).

Although most of the largest improvements were obtained for

distant homologs, the method was also able to improve starting

templates for most of the closer homolog pairs that are structurally

more similar. For example, improvements in GDT-HA $0.1 were

observed for the pairs 1U19 from 2Z73, 2Z73 from 1U19, 1J4N

from 1FX8, and 1L7V from 2NQ2 sharing more than 25%

sequence identity in the modeled regions (Table S1). In the latter,

reconstruction of distorted TMHs with different kink patterns

between target and template allowed accurate prediction of

backbone and side-chain conformations in the TM region (Ca
RMSD of 1.1 Å, Fig. 2G).

De novo prediction of loop structures
When loop sequences are well aligned between template and

target, their structures from the template are, as for TM regions,

accurately refined at all-atom. In absence of significant sequence

Figure 4. De novo prediction of loop structures in membrane proteins. Cartoon representation of selected models, templates and native
structures are in magenta, cyan and blue, respectively. A. Blind prediction of the chemokine CXCR4 receptor (3ODU) from the beta2 adrenergic
receptor (2RH1): extracellular loop 3 (residues G220-I246). B. Blind prediction of the dopamine D3DR receptor (3PBL) from the beta2 adrenergic
receptor (2RH1): intracellular loop 2 (residues V109-T118). C. Modeling of the Squid Rhodopsin (2Z73) from bovine rhodopsin (1U19): intracellular
loop 3 (residues N229-N254). D. Loop modeling of ECF-type riboflavin transporter (3P5N) from the BioY transporter (4DVE) (residues I55-G83). E. Loop
modeling of the Ammonia Channel AmtB (1U7G) from the Ammonium Transporter Amt-1 (2B2H) (residues I325-M342). F. Blind prediction of the
chemokine CXCR4 receptor (3ODU) from the beta2 adrenergic receptor (2RH1): extracellular loop 2 (residues A174-N192).
doi:10.1371/journal.pcbi.1003636.g004

Membrane Protein Modeling from Remote Homologues
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alignment with the template, loops are rebuilt de novo from

sequence and accurately predicting their structures remains a

challenge in the field of protein modeling. Three scenarios are

typically encountered: 1) When loops are short (typically ,8

residues) (e.g. kinks in distorted TMHs) or 2) When loops are long

(typically $8 residues) but not only composed of disordered

segments (i.e. incorporating a significant fraction of secondary

structure elements), our approach can rebuild these regions from

sequence with near-atomic accuracy (Ca RMSD within 2.5 Å).

Examples include the blind-predicted extracellular loop 3 of

CXCR4 (residues G220-I246) and the blind-predicted intracellular

loop 2 of DRD3 (residues V109-T118) as well as several GPCR

and non-GPCR loops in our benchmark (Fig. 4A–E). 3) Loops

such as the extracellular loop 2 of GPCRs can be long and

mostly disordered and/or make numerous contacts with small

molecules or with other subunits in the crystal structures.

Because crystal contacts or ligands are not modeled by the

current method, near-native conformations of loops stabilized by

such contacts are very difficult to select by energy alone.

Therefore, although our blind predicted model of the long

disordered extracellular loop 2 of CXCR4 was significantly

more accurate than any other submitted model in the blind

prediction, future developments (e.g. integrated loop modeling

and ligand docking) will be necessary to consistently reach high-

accuracy prediction in these regions and allow accurate

prediction of ligand-bound conformations. Nevertheless, our

results suggest that our method should be useful in rebuilding

and refining X-ray structures of membrane receptors where

functionally important loop regions have missing densities or are

often deleted to facilitate crystallization.

Selected models are of suitable accuracy for rational
design applications

An important question in the field of protein modeling is the

relationship between the accuracy of the models and their

potential applications. Near-atomic resolution models should be

accurate enough to guide the rational design of mutations and the

interpretation of their effects [4]. As a stringent test of the accuracy

of our predictions, we subjected the selected models from our

benchmark to complete sequence redesign in the TMH regions

and compared the results to similar calculations performed with

the native X-ray and initial template structures (Methods).

Single-state design calculations select combinations of amino acids

that minimize the free energy of (i.e. predicted to stabilize) the

protein. Previous sequence calculations performed on high-

resolution transmembrane helical protein X-ray structures reca-

pitulated a significant fraction of native sequences [24], suggesting

that this fraction of residues is naturally selected for stability.

Because the physical interactions underlying the selection of amino

acids are very sensitive to the atomic details of the structure, the

level of native amino acid recovery should be indicative of the

accuracy of the protein structure. While redesigned template

structures recovered only 2366% of native amino acid sequences,

Figure 5. Significant improvements of close to distant homolog templates. In the panels, each dot represents a prediction of a target from
a template structure (blue for RosettaMembrane, red for MEDELLER [30], green for I-TASSER [32,33], black open squares for MODELLER [31]). The
accuracy of the model (y-axis) and starting template (x-axis) to the X-ray structure of the target is given for 50 protein pairs. The black line represents
the absence of improvements where both model and template have identical accuracy. Accuracies are measured using GDT-HA [34] over full-length
(A) and TMH (B) structures. They are also reported for the TMH regions as the percentage of residues within 2 Å (C) and 1 Å (D) of the native
structure.
doi:10.1371/journal.pcbi.1003636.g005
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redesigned X-ray and selected model structures recovered

35610% and 4268% of native amino acid sequences, respec-

tively. Only 41613% of the native residues recovered in

redesigned templates were also recovered in redesigned X-ray

structures. By contrast, 7267% of the native residues recovered in

redesigned selected models were also recovered in redesigned X-

ray structures. These results indicate that the native interactions

recovered in redesigned X-ray and selected model structures are

similar, and suggest that the TMH regions of protein models

generated using our method are in a range of accuracy suitable for

rational design applications.

Discussion

The prediction of membrane protein structures represents an

important approach in light of their difficult experimental

determination but remains a challenging problem. Current

prediction techniques are limited to the generation of low-

resolution models from sequence information alone [10–12] or

of near-atomic resolution models from close structural homologues

[5]. However, close structural homologs are currently not available

for a large fraction of membrane proteins and often only one

distant structural homolog hit can be found for these proteins (Fig.
S1), making their structure prediction at high-resolution a real

challenge. To address this problem, we developed a generic

method that can efficiently reconstruct TMH and loop regions

from single distant or closer homologues. The method was

stringently validated in two blind predictions and in a large

benchmark consisting of pairs of membrane protein homologues

with wide diversity in length, topology and sequence identity.

Submitted models were first-ranked in the blind predictions

[14,15] for the accuracy of the full-length receptor structure and

the method was able to improve most starting templates in the

benchmark to reach near atomic accuracy prediction in the TMH

regions (Fig. 2, Fig. 5, Table S1). In local regions of the TMH

structures where distortions differed between template and target,

the method was able to significantly improve the starting template

and to predict distorted helical structures with an average Ca
RMSD of only 0.8 Å to the native structures (Fig. 3, Table S2).

As a stringent proof of the model’s accuracy, complete redesign of

their TMH regions recapitulated similar native interactions than

the redesign of the same regions in the X-ray structures. In

contrast, the methods MEDELLER [30], a comparative modeling

technique developed for membrane proteins, the widely used

homology modeling software MODELLER [31], and I-TASSER,

a web-server for protein structure prediction [32,33], did not

significantly improve homologous templates (Fig. 5).

The improvements observed for most distant or closer

homologues with diverse length and topology indicate that the

method provides a general and efficient approach for reconstruct-

ing the structure of a large diversity of transmembrane helical

folds. Starting templates with sequence identity to the target as low

as 15% were significantly improved, suggesting that the technique

should be effective at generating atomic-level models more

accurate than available templates for many structurally unchar-

acterized TMH proteins (Fig. S1).

Because the conformational heterogeneity and poor stability of

eukaryotic membrane proteins in detergents is a major bottleneck

to their crystallization, their stabilization has been a very intensive

area of research but has only been achieved with limited success

using labor-intensive cycles of random or scanning mutagenesis

[36–38]. According to our design calculations, our technique can

predict stabilizing physical interactions in structurally uncharac-

terized receptors and should therefore be particularly useful for

predicting mutational effects on receptor’s conformational stabil-

ity, for engineering receptors with altered conformational energy

landscape and for precisely guiding structure/function studies.

Future developments will involve 1) the explicit modeling of

water molecules to improve the prediction of TMH core regions,

and 2) the simultaneous modeling of loop and bound ligand

conformations to improve the prediction of loop structures and

allow accurate prediction of receptor-ligand bound conformations

and interactions for ligand docking and virtual screening

applications.

In conclusion, the method may prove useful for the atom-level

modeling and design of structurally uncharacterized classes of

alpha-helical membrane receptors which are particularly chal-

lenging to study experimentally and for which close homologues

are currently often not available.

Methods

Identification of structural homologs for all human
transmembrane helical proteins

To analyze the coverage potential of homology modeling of

membrane proteins, HHpred [25], a toolkit for searching and

aligning query sequences with sequences from existing structures,

was run on three datasets of human transmembrane helical

proteins. Two datasets were taken from the Survey of the Human

Transmembrane Proteome [39] and consisted in: 1) full-length

sequences of human transmembrane proteins with at least two

predicted transmembrane helices (3838 sequences), and 2) full-

length sequences of human transmembrane proteins with at least

two predicted transmembrane helices truncated to the transmem-

brane domain (i.e. from the first to last predicted transmembrane

helix residues) (3838 sequences). Additionally, a full-length human

transmembrane proteome dataset (6521 sequences) was created by

supplementing the aforementioned 3838 full-length multi-pass

sequences with 2683 human single-pass transmembrane helical

proteins from Uniprot database [40]. Each of these datasets were

clustered at 98% sequence identity using USEARCH [41],

yielding non-redundant dataset sets of 3405, 3079, and 5818

for the full-length human multi-pass transmembrane helical

proteins, transmembrane domain truncated human multi-pass

transmembrane helical proteins, and full-length combined single-

and multi-pass human transmembrane helical proteins, respec-

tively. These were used as inputs to HHpred search for

structurally characterized homologs. HHpred was run by using

the HHsuite programs HHblits [26] (to generate HMM

alignment from searching Uniprot database) and HHsearch

[27] (to match the HMM-HMM alignment to PDB database).

DSSP [42] and Psipred [43] were used for secondary structure

prediction annotation as part of the HHpred protocol. The

resultant HHpred alignments were filtered by a range of percent

sequence identity thresholds (i.e. of homolog hit versus query) and

percent coverages (i.e. of total length of query sequence) of 90%,

75%, 60% or 50%.

Dataset of membrane protein structures for the
benchmark

A representative dataset of 50 membrane protein structure

pairs was selected that samples a wide range of sequence identity

(from 15% to 70%), length (from 183 to 420 residues) and

topology (from 5 to 12 TMHs). As outlined below, the dataset

was selected to be representative of the entire classes of

membrane proteins that can be modeled using the method

described in this study.
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Selection of modeling targets from the Orientation of
Proteins in Membranes (OPM) database[44]

Membrane protein targets were selected by filtering the OPM

database with the following criteria that reflect the current scope of

the method. Firstly, selecting for ‘‘transmembrane’’ and ‘‘alpha-

helical polytopic’’, 936 proteins in 75 superfamilies were identified.

Next, families were removed that 1) have less than two unique

protein structures (need at least one homolog) –or– 2) consist of

multi-protein complexes –or– 3) consist of very large proteins (.15

secondary structure elements or .600 residues) –or– 4) contain

large cofactors (e.g. heme groups) –or– 5) formed from many

symmetrical subunits. This reduced the number of superfamilies to

18. Additionally, four of the remaining superfamilies did not

contain proteins with structurally characterized homologs with

sequence identity .15% and were also removed. The remaining

14 superfamilies are the following (as categorized by OPM

database): 1) Rhodopsin-like receptors and pumps, 2) ABC

transporters, 3) General secretory pathway, 4) Major Intrinsic

Protein, 5) Ammonia and urea transporters, 6) Major Facilitator

Superfamily, 7) APC (Amino acid-Polyamine-organoCation)

superfamily, 8) Monovalent cation-proton antiporter, 9) Chloride

transporter, 10) Multidrug/Oligosaccharidyl-lipid superfamily, 11)

Energy-coupling factor transporters, 12) Rhomboid protease, 13)

Sodium/calcium exchanger, and 14) Peptidase family M48. Our

dataset of modeling targets covers 12 of 14 superfamilies. The

available target/template homologs for the Monovalent cation-

proton antiporters and the Peptidase family M48 are too distant

(structural alignment between template and target is extremely

poor: Calpha rmsd = 25 Å) and too homologous (38% identity),

respectively, to be considered relevant for this study. In total we

selected 50 representative modeling cases combining different

target/template pairs, and 31 unique targets. Of our modeling

targets, 12 are GPCRs (11 Class A and 1 Class B) and 19 are non-

GPCRs membrane proteins.

The following X-ray structures and corresponding pdb codes

were selected from the protein database:

1) GPCRs: Bovine rhodopsin (1U19), Squid rhodopsin (2Z73),

Beta2 adrenergic receptor (2RH1), Beta1 adrenergic receptor

(2Y00), Adenosine A2A receptor (3EML), Dopamine D3

receptor (3PBL), Chemokine receptor CXCR4 (3ODU),

Kappa opioid receptor (4DJH), M2 muscarinic acetylcholine

receptor (3UON), Histamine H1 receptor (3RZE), Sphingo-

sine 1-phosphate receptor 1 (3V2Y), Delta opioid receptor

(4EJ4), M3 Muscarinic Acetylcholine Receptor (4DAJ),

human glucagon receptor (4L6R), corticotropin-releasing

factor receptor 1 (4K5Y).

2) non-GPCRs: Aquaporins (1J4N, 3GD8), Glycerol channel

(1FX8), Formate channel (3KLY), Arginine antiporter

(3L1L), Lactose Permease (2CFQ), EmrD multidrug trans-

porter (2GPF), E. coli GlpG rhomboid family intramembrane

protease (2IC8), GlpG, Rhomboid Peptidase from Haemophilus

influenzae (2NR9), E. coli BtuCD protein, an ABC transporter

mediating vitamin B12 uptake (1L7V), putative metal-chelate-

type adenosine triphosphate (ATP)-binding cassette (ABC)

transporter from Haemophilus influenzae (2NQ2), E. coli

Ammonia Channel AmtB (1U7G), Ammonium Transporter

Amt-1 from Archaeoglobus fulgidus (2B2H), Rhesus protein Rh50

from Nitrosomonas europaea (3B9W), ECF-type riboflavin

transporter from Staphylococcus aureus (3P5N), thiamine-specific

S-component ThiT ECF-type transporter from Lactococcus

lactis (3RLB), apo-ApcT, a proton-coupled broad-specificity

amino acid transporter (3GIA), Glu-GABA antiporter GadC,

a member of the amino-acid-polyamine-organocation super-

family of membrane transporters (4DJK), Cyanobacterial

Cl2/H+ antiporter (3ND0), eukaryotic CLC transporter

(3ORG), Protein translocases SecY (1RH5, 2ZJS), Energy-

coupling factor transporter EcfA (4HZU), Sodium/calcium

exchanger (3V5U), Proton/calcium exchanger (4KPP), Pro-

ton-driven MATE exporter (3VVO), Sodium/drug antiporter

NorM (3MKT), Rhesus Glycoprotein RhCG (3HD6).

Sequence alignment between target and templates
Several methods including the consensus method 3D-Jury [45]

and HHpred [25] based on HMM-HMM comparisons were

tested to generate optimal sequence-sequence alignments. HHpred

gave the best alignments in our benchmark and was subsequently

used for all predictions. The following parameters were used: ten

PSI-BLAST iterations with an E-value threshold of 1E-3, local

alignment with global final realignment. For the blind predictions,

the best alignment was systematically considered to select

homologues and construct templates. For a few of the most

distant pairs (3L1L from 3GIA, 2CFQ from 2GPF, 3P5N from

4DVE, 3GIA from 4DJK, 2GPF from 2CFQ, 3KLY from 3GD8,

3GD8 from 3KLY, 3HD6 from 1U7G, 3VVO from 3MKT and

4HZU from 3RLB), the sequence alignment generated by

HHpred was adjusted manually, guided by topology prediction

of TMHs given by Octopus [46] and secondary structure

prediction given by Psipred [43], to improve the alignment of

the TMH region and minimize the number gaps or insertions in

this region.

Generation of models using MEDELLER
The template structures and alignments between template and

target sequences for each protein pair in the benchmark were used

as inputs to the Homology Modeling software MEDELLER

[30]. MEDELLER was run using the online MEDELLER server

(http://opig.stats.ox.ac.uk/webapps/medeller/home.pl?app =

MEDELLER) with default settings to generate ‘‘complete’’

models. The MEDELLER server does not provide a benchmark-

ing option that excludes the target structure from its loop modeling

process, which uses FREAD [39], a database search loop modeling

algorithm. Therefore, all models generated by MEDELLER were

checked for loops that incorporated fragments from the target

structure. For all but two protein pairs in the benchmark, the

complete models generated by the MEDELLER server did not

include target loops and were directly used for analysis. The two

MEDELLER models (3EML from 3UON and 1U7G from

3B9W) that included target loops were run again on the online

FREAD server (http://opig.stats.ox.ac.uk/webapps/fread/php/

index.php) and the best loop fragment hits excluding those from

the target were used for analysis.

Generation of models using MODELLER
Homology modeling with MODELLER [31] was run using an

online MODELLER server (http://toolkit.tuebingen.mpg.de/

modeller) with default settings. The template structures and

alignments between template and target sequences for each

protein pair in the benchmark were used as inputs.

Generation of models using I-TASSER
The I-TASSER server (http://zhanglab.ccmb.med.umich.edu/

I-TASSER/) was provided with the same target sequence, target/

template alignment and template structure than Rosetta, MOD-

ELLER and MEDELLER (option I: Specify template with

alignment). To ensure that I-TASSER would not use any

additional homolog templates closer to the target than the one
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assigned in each protein pair of the benchmark, other templates

with sequence identity higher than 25% to the target or closely

related to the homolog template assigned in each protein pair were

excluded (option II: Exclude homologous templates/Exclude

specific template proteins). I-TASSER usually generated 5 models

and the most accurate one is reported in our study.

Rebuilding-and-Refinement protocol
The method consists of three parts: 1. Rebuilding of

TMH structures, 2. Rebuilding of non-TMH (e.g. loops, helical

bends) structures, 3. All-atom refinement of reconstructed

structures.

1. Rebuilding of TMH structures is performed if 1) gaps in the

sequence alignment occur in these regions, 2) bends have different

predicted positions (e.g. unaligned Prolines or coil motifs, non-

conservation of Prolines between template and target sequences)

or 3) TMHs have different predicted lengths (i.e. significantly

different secondary structure prediction) indicating potential

different tilt angles with regards to the membrane plane.

Concerning the prediction of residues promoting helical bends,

we limited ourselves to the presence of prolines in the target or in

10% of the homolog sequences which, depending on the

membrane protein structure databases analyzed, account for

between 60% [21] and 90% [18] of TMH kinks. Sequence motifs

other than prolines have been reported to induce helical bends but

current sequence-based predictions do not exhibit a combined

sensivity/specificity high enough to be used as an automated input

in the rebuilding of TMHs. Even if they cannot be identified by

sequence or secondary structure information alone, helical bends

and distortions promoted by local strain in the backbone structure

or by specific tertiary interactions can still be identified and

modeled during the all-atom structure refinement stage.

Rigid-body helical degrees of freedom of TMHs to be rebuilt

are sampled based on a kinematic description of the polypeptide

chain where the protein system is represented in internal

coordinates by a tree of atoms which can have any structure

provided there is no closed loop [10,47]. The atom-tree

representation was further developed so that the edges in the tree

can be any bond connections or rigid body transformations,

making the protein a single continuous bonded chain or multiple

domains connected by virtual long-range ‘‘jumps’’ between

residues. This new atom-tree representation allows torsional and

rotameric sampling within each individual TMH segment as well

as perturbations in the rigid body degrees of freedom around the

‘‘jump’’ connecting these segments. Loops and local distorted

regions connecting full-length or fragments of TMHs to be rebuilt

are stripped out from the template and alternative TMH

conformations are generated by randomly sampling rigid body

degrees of freedom along and off the helical axis. At this stage, the

protein template is represented at the coarse-grained level where

side-chain conformations are averaged out, thereby drastically

decreasing the number of degrees of freedom to be sampled.

Moves are accepted using a Metropolis Monte-Carlo criterion

(1000 to 5000 steps for each TMH fragment constrained by a

Gaussian function to 1–1.5 Å of the starting structure) and

followed by loop rebuilding and full structure gradient-based

minimization (see below).

More specifically, as shown in Fig. 1, kinked TMHs are

represented by two TMH fragments and a distorted helical turn

around the kink. Each helix fragment is treated as a rigid-body and

defined by a helical axis (m for ‘‘moveable’’ and f for ‘‘fixed’’

defining the reference state). Following the distribution of kink

angles and distances between TMH fragments of kinked TMHs in

membrane protein structures, the two TMH fragments adopt

relative orientations that are constrained in space. The m helix is

moved with regard to the f helix according to the following degrees

of freedom:

1) A translation is applied to the m helix moving its C-terminus

to a random point on the surface of a hemisphere originating

at the N-terminal of the fixed helix, with a gaussian radius

equal to 7.260.6 Å (only +z-axis translation is allowed) [24].

2) A rotation is applied to the m helix. The rotation is to a

random vector restricted to the +z, and +x quadrants (2x

being defined as the vector between the m helix C-terminus

and the Carbon Beta (CB) atom of the f helix N-terminal

residue, e.g. proline). These moves ensure that the projection

of the N-terminus of the m helix on a plane orthogonal to the f

axis and crossing the proline ring preferentially occupies the

semicircle away from the proline ring as observed in kinked

TMH native structures (Fig. 1) [23].

In addition to these constrained moves, each TMH fragment is

allowed to spin around its helical axis. Finally, the f and m helices

are also allowed to move as a single unit and to sample the

conformational degrees of freedom of a standard alpha helix rigid

body.

2. Non-TMH (e.g. loops, helical bends) structures with low

sequence identity to the template or exhibiting gaps/deletions in

the sequence alignment with the template are rebuilt de novo [10].

This step follows the previously developed de novo folding

protocol for membrane protein structures and involves random

peptide fragment insertions subjected to acceptation by the

Metropolis criteria based on the total energy of the system. At

this stage, the system is still represented at the coarse-grained level

and the low-resolution energy function of Rosetta is used to

compute the energy of the system. Cyclic coordinate descent

(CCD) is used to close the chain break in the rebuilt region and to

maintain the connectivity of the protein chain, and is achieved by

iteratively inserting fragments and increasing the chain break

penalty. If after twelve rebuilding steps, any chain break remains

larger than 0.2 Å, the region to be rebuilt is expanded by one

residue on both sides until a continuous peptide chain is recovered.

The libraries of fragments to be inserted are generated for

fragments of size 9 and 3. Fragments of larger size were tested but

didn’t provide any significant improvements in the accuracy of the

rebuilt regions.

Helical bends in kinked TMHs are typically modeled as four

residues loop insertion connecting two helical fragments and can

sometime result in distorted loop conformations which are not

usually observed in native kinked helices. Such local structures

involve either a combination of non-helical turns and 310 helix or

helical distortions extending 2 or 3 residues Cterminal to the

residue responsible for the bend. In such situation, starting from

the selected all-atom refined model, a larger window of residue

(e.g. 5 to 8) is rebuilt and locally refined using the loop modeling

protocol.

3. The fragment insertion protocol described above involves

fragment insertion moves that sample a large conformational

space to identify a broad range of physically-realistic conforma-

tions. The coarse-grained models are then subjected to all-atom

refinement which searches the all-atom conformational energy

landscape for local minima in the vicinity of these structures. This

step combines an all-atom energy function developed for

transmembrane protein structures with an efficient search for

low-energy conformations. As described previously [24], the

energy function mainly consists of short-range interactions, e.g.

Lennard-Jones, hydrogen-bond. Knowledge-based potentials de-
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scribe torsional states of both backbone and side-chain atoms and

the solvation energy of each atom as a function of both its depth in

the membrane and its burial in the protein. A Monte-Carlo

minimization procedure with discrete side-chain optimization is

used to efficiently sample low-energy conformations in the rugged

all-atom energy landscape. A single move involves the following

steps: 1) random backbone perturbations, 2) discrete side-chain

optimization for the new backbone conformation, 3) minimization

of the energy of the system with respect to all conformational

degrees of freedom. Several cycles of small backbone perturbations

are first applied to the entire receptor starting with a smooth

Lennard-Jones potential followed by an iterative ramping up of the

repulsive part of the potential. This procedure allows a smooth

transition from a coarse-grained to a full-atom representation

without loosing the compactness of the initial structures.

To avoid the sampling of conformational space unlikely

occupied by the target sequence, the all-atom energy function is

also supplemented by a constraint potential maintaining conserved

regions that are in vicinity in the template structures. These

constraints are defined between pairs of strictly conserved or

similar residues in both target and template sequences and that are

in vicinity in the template structures. In our calculations, a

constraint is defined by a distance between the Ca atoms of the

interacting residue pairs and a constraint width (i.e. the deviation

from the assigned distance at which the constraint score begins to

ramp up). Any deviation from these distances during refinement is

penalized by a harmonic potential. Small constraint widths were

assigned for short-range contacts (e.g. 0.2 Å for contacts #5 Å)

while larger constraint widths were assigned for longer-range

constraints (e.g. 0.5 Å for contacts of ,8 Å). To avoid over

constraining the models to the starting template, the average

number of selected constraints was around 5% of the total number

of residues for the most distant homolog pairs (i.e. sequence identity

of 15–20%) and between 5% and 10% for intermediate homolog

pairs (i.e. sequence identity of 20–25%). For closer homolog pairs

(i.e. sequence identity .25%), models were highly constrained to

the starting templates at most positions not rebuild de novo.

Selection of models
Between 10000 and 40000 all-atom refined models are generated

per target. 1000 or up to 10% lowest energy structures are selected

and their transmembrane region clustered into structurally-related

families using Rosetta’s clustering protocol. The most accurate

model among the five lowest-energy structures which cluster in one

of the five largest families of models is selected and discussed in this

study. Accuracy of the models to the target structure is computed

using TM-SCORE [48] over full length and TM regions.

Sequence design calculations
Sequence design calculations were performed as described

previously [24,49]. Briefly, the backbone coordinates from the X-

ray structure, the selected model and the initial template were

selected to perform the design calculations. All 20 amino acids were

allowed at the TMH positions and the native residues were kept in

the loop regions. The combination of amino acids and side-chain

conformations minimizing the free energy of the system was selected

by Monte Carlo sampling of discrete side-chain conformations (i.e.

rotamers) followed by energy minimization over all conformational

degrees of freedom. The Dunbrack rotamer library [50] expanded

by rotamers at +21 standard deviation around the mean values for

the dihedral angles chi1 and chi2 was used to repack the structures.

The energy of each structure was computed using the all-atom

RosettaMembrane energy function [24]. 100 independent design

calculations were performed starting from each individual backbone

structure. The percentage of native sequence recovery was

calculated from the lowest energy designed structures.

Supporting Information

Figure S1 Homology modeling coverage for the human
multi-pass TMH proteome. A. Percent of hits (i.e. structural

homologs) as calculated by HHpred [25–27] for all full-length

human multi-pass TMH proteins (3405 annotated sequences [39])

split in three target/template sequence identity thresholds: distant

(percent sequence identity between target and template between

15 and 25%: %ID 15–25), medium (%ID 25–35) and close

homology (%ID .35) thresholds. The data is represented for four

levels of target sequence length coverage by the template: 50%

(green), 60% (red), 75% (grey) and 90% (blue). B. Distribution of

hits in the distant homology (%ID 15–25) bin for all full-length

human multi-pass TMH proteins. The fraction of transmembrane

proteins for which 1, 2, 3, 4 or more than 4 distant homolog

templates were identified by HHpred is represented for 75% target

sequence length coverage by the template. C, D. Percent of hits

(i.e. structural homologs) as calculated by HHpred [25–27] for all

full-length human multi-pass and single-pass TMH proteins (5818

annotated sequences, C) or for all TM domains (i.e. from the first

to the last TMH residue) of all human multi-pass TMH proteins

(3079 annotated sequences [39], D), split in three target/template

sequence identity thresholds: distant (percent sequence identity

between target and template between 15 and 25%: %ID 15–25),

medium (%ID 25–35) and close homology (%ID .35) thresholds.

The data is represented for four levels of target sequence length

coverage by the template: 50% (green), 60% (red), 75% (grey) and

90% (blue).

(DOCX)

Table S1 Improvement of model accuracy. The most

accurate among the five lowest energy selected Rosetta models (see

Methods) is reported in the table. If the selected model does not

belong to the lowest energy cluster, the Ca rmsd of the lowest

energy model from the lowest energy cluster is also reported in

parentheses next to that of the selected model for the TMH region.

For comparison, the most accurate among five models generated

by the methods Modeller, Medeller and I-TASSER is reported. a

Sequence identity between target and template sequences

calculated by HHpred [25] over aligned full length or modeled

regions. b Mode of Rosetta used to generate models: TMH

rebuilding mode (RBK), Regular loop relax (LR). c R.m.s.

deviation over Ca atoms (in Å) to the crystal structure. d

Geometric Distance Test with High-Accuracy [34]. This value is

the average of four-numbers: the numbers of residues aligned

between template or model and crystal structure within 0.5 Å,

1 Å, 2 Å and 4 Å [34]. e Percentage of residues superimposable

within 2 angstroms of the crystal structure. f Percentage of residues

superimposable within 1 angstrom of the crystal structure. g

Transmembrane helical (TMH) region is defined by the helices

spanning the lipid membrane.

(DOCX)

Table S2 Improvement of model accuracy in the
distorted second TMH of GPCRs. The most accurate among

the five lowest energy selected models (see Methods) is reported in

the table. a R.m.s. deviation over Ca atoms (in Å) of TMH2 to the

crystal structure. b Geometric Distance Test (GDT). This value is

the average of four-numbers: the numbers of residues aligned

between template or model and crystal structure within 1 Å, 2 Å,

4 Å and 8 Å [48]. c Geometric Distance Test with High-Accuracy

(GDT-HA). This value is the average of four-numbers: the
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numbers of residues aligned between template or model and

crystal structure within 0.5 Å, 1 Å, 2 Å and 4 Å [34]. ,DPHI.

and ,DPSI. represents the average deviation of backbone

dihedral angles between template or model and native structure in

the de novo rebuilt bend region.

(DOCX)
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