Christy Tinberg

I began my career in biochemistry as an undergraduate at Northwestern University, where I studied copper acquisition by Methanotrophic bacteria with Prof. Amy Rosenzweig. In July of 2010, I completed by Ph.D. in Biochemistry at MIT under the supervision of Prof. Steve Lippard. My thesis research involved investigating the catalytic mechanisms of dinuclear iron enzymes that utilize molecular oxygen to oxidize small, inert hydrocarbons. In particular, spectroscopic and pre-steady state kinetic studies revealed mechanistic features of methane monooxygenase, a remarkable enzyme that oxides methane to methanol, one of the most difficult reactions performed in biology.

In October of 2010 I joined the Baker Lab, where I am interested in designing small molecule binding proteins for use as biosensors and bioscavengers. My work relies on a combination of computational and experimental approaches and is very collaborative within the lab.


Publication List:

Tinberg, C. E.*, Khare, S. D.*, Dou, J., Doyle, L, Nelson, J., Schena, A., Jankowski, W., Kalodimos, C. G., Johnsson, K., Stoddard, B. L., and Baker, D. Computational Design of Ligand Binding Proteins with High Affinity and Selectivity. Nature 2013, 501, 212-216. *Equal author contribution.

 *Commentary by: Ghirlanda, G. Computational biology: A recipe for ligand-binding proteins. Nature 2013, 501, 177-178. Press coverage by: Science (Service, R. F. Protein designers go small. Science 2013, 341, 1052), Nature Methods (Doerr, A. Molecular Engineering: Designer Binders. Nature Methods, 2013, 10, 1057), Nature Reviews Drug Discovery (Harrison, C. Computational Chemistry: Designing optimal ligand-binding proteins. Nat. Rev. Drug. Discov. 2013, 12, 742), ACS Chemical Biology (Gordon, E. J. Computing Designer Proteins, ACS Chem. Biol. 2013, 8, 2109), UW News, Science Daily, Nanowerk,, and Slashdot

Do, L. H., Wang, H., Tinberg, C. E., Dowty, E., Yoda, Y., Cramer, S. P., and Lippard, S. J. Characterization of a Synthetic Peroxodiiron(III) Protein Model Complex by Nuclear Resonance Vibrational Spectroscopy. Chem. Comm. 2011, 47, 10945-10947.

Pan, E., Zhang, X.-A., Huang, Z., Krezel, A., Zhao, M., Tinberg, C. E., and Lippard, S. J., McNamara, J. O. Vesicular Zinc Promotes Presynaptic and Inhibits Postsynaptic Long Term Potentiation of the Hippocampal Mossy Fiber-CA2 Synapse. Neuron 2011, 71, 1116-1126.

Tinberg, C. E. and Lippard, S. J. Dioxygen Activation in Soluble Methane Monooxygenase. Acc. Chem. Res. 2011, 44, 280-288.

Tinberg, C. E., Song, W. J., Izzo, V., and Lippard, S. J. Multiple Roles of Component Proteins in Bacterial Multicomponent Monooxygenases: Phenol Hydroxylase and Toluene/o-Xylene Monooxygenase from Pseudomonas sp. OX1. Biochemistry. 2011, 50, 1788-1798.

Tinberg, C. E.*, Tonzetich, Z. J.*, Wang, H., Do, L. H., Yoda, Y., Cramer, S. P., and Lippard, S. J. Characterization of Iron Dinitrosyl Species in the Reaction of Nitric Oxide with a Biological Rieske Center. 2010, J. Am. Chem. Soc. 2010, 132, 18168-18176. *Equal author contribution.

Tinberg, C. E. and Lippard, S. J. Oxidation Reactions Performed by Soluble Methane Monooxygenase Hydroxylase Intermediates Hperoxo and Q Proceed by Distinct Mechanisms. Biochemistry 2010, 49, 7902-7912.

Tonzetich, Z. J., Wang, H., Mitra, D., Tinberg, C. E., Do, L. H., Jenney, F. E., Adams, M. W. W., Cramer, S. P, and Lippard, S. J. Identification of Protein-Bound Dinitrosyl Complexes by Nuclear Resonance Vibrational Spectroscopy. J. Am. Chem. Soc. 2010, 132, 6914-6915.

Tinberg, C. E. and Lippard, S. J. Revisiting the Mechanism of Dioxygen Activation in Soluble Methane Monooxygenase from M. capsulatus (Bath): Evidence for a Multi-Step, Proton-Dependent Reaction Pathway. Biochemistry. 2009, 48, 12145-12158.

Hakemian, A. S., Tinberg, C. E., Kondapalli, K. C., Tesler, J., Hoffman, B., Stemmler, T. L. and Rosenzweig, A. C. The Copper Chelator Methanobactin from Methylosinus trichosporium OB3b Binds Copper(I). J. Am. Chem. Soc. 2005, 127, 17142-17143.